Энциклопедия вирусных инфекций

Счастливый стакан Игра «Налей воды в стакан»

Вредно ли пить безалкогольное пиво Выводы проведенных тестирований

Утка с яблоками и апельсинами в духовке

Сеголен Руаяль: фото, биография, личная жизнь, дети Метрессы президента Олланда и разброд в социалистической партии

Блюда из мяса. Мясо и мясные продукты. основным сырьем для мясной промышленности, являются сельскохозяйственные животные (убойный скот) и домашняя птица. Презентация интересные факты о мясе

Почему на Пасху говорят "Христос воскрес?

История государства израиль Иерусалим и Старый город, оказалась аннексированной Иорданией

Прививка акдс или пентаксим: отличия, что лучше Прививка акдс альтернатива

Автоматическое определение движка форума

Китайская методика познания себя «9 звезд»: узнай правду о своей судьбе!

Баня в мешке с березовыми листьями

Происхождение слова «сура»

О первых днях после зачатия: что происходит в организме женщины в самом начале беременности?

Готовый бизнес-план: магазин разливных напитков

Солодка, лечение солодкой, лечение корнем солодки Корень солодки сбор осень

Графическая форма представления комплексных чисел.

Го) числа.

2. Алгебраическая форма представления комплексных чисел

Комплексным числом или комплексом, называется число, состоящее из двух чисел (частей) – вещественного и мнимого.

Вещественным называется любое положительное или отрицательное число, например, + 5, - 28, и т.п. Обозначим вещественное число буквой “L”.

Мнимым называется число, равное произведению вещественного числа на квадратный корень из отрицательной единицы, например, 8 , - 20 , и т.п.

Отрицательная единица называется мнимой и обозначается буквой «йот»:

Обозначим вещественное число в составе мнимого буквой “М”.

Тогда мнимое число можно записать так: j М. В таком случае, комплексное число А можно записать так:

А = L + j М (2).

Такая форма записи комплексного числа (комплекса) , представляющая собой алгебраическую сумму вещественной и мнимой частей, называется алгебраической .

Пример 1. Представить в алгебраической форме комплекс, вещественная часть которого равна 6, а мнимая 15.

Решение. А = 6 +j 15.

Кроме алгебраической формы, комплексное число можно представить еще тремя:

1. графической;

2. тригонометрической;

3. показательной.

Такое многообразие форм резко упрощает расчеты синусоидальных величин и их графическое изображение.

Поочередно рассмотрим графическую, тригонометрическую и показатель-

ную формы представления комплексных чисел.

Графическая форма представления комплексных чисел

Для графического представления комплексных чисел применяют прямо-

угольную систему координат. В обычной (школьной) системе координат вдоль осей «х» (ось абсцисс) и «y» (ось ординат) откладываются положительные или отрицательные вещественные числа.

В системе же координат, принятой в символическом методе, вдоль оси «х»

в виде отрезков откладывают действительные числа, а вдоль оси «у» – мнимые

Рис. 1. Система координат для графического изображения комплексных чисел

Поэтому ось абсцисс «х» называют осью вещественных величин или, для сокращения, вещественной осью.



Ось ординат называют осью мнимых величин или мнимой осью.

Саму же плоскость (т.е. плоскость рисунка), на которой изображают комплексные числа или величины, называют комплексной плоскостью.

В этой плоскости комплексное число А = L + j М изображено вектором А

(рис. 2), проекция которого на вещественную ось равна его вещественной части Re A = А" = L, а проекция на мнимую ось – мнимой части Im A = А" = М.

(Re – от англ. real – реальный, действительный, настоящий, Im – от англ.imaginary – нереальный, мнимый).

Рис. 2. Графическое представление комплексного числа

В этом случае число А можно записать так

А = А" + А" = Re A + j Im A (3) .

Используя графическое изображение числа А в комплексной плоскости, введем новые определения и получим некоторые важные соотношения:

1. длина вектора А называется модулем вектора и обозначается |A|.

По теореме Пифагора

|A| = (4) .

2. уголα, образованный вектором А и вещественной положительной полу-

осью, называется аргументом вектора А и определяется через его тангенс:

tg α = А" / А" = Im A / Re A (5).

Таким образом, для графического представления комплексного числа

А = А" + А" в виде вектора надо:

1. найти модуль вектора |A| по формуле (4);

2. найти аргумент вектора tg α по формуле (5);

3. найти угол α из соотношения α = arc tg α;

4. в системе координат j (х) провести под углом α вспомогательную

прямую и на ней в определенном масштабе отложить отрезок, равный модулю вектора |A|.

Пример 2. Комплексное число А = 3 + j 4 представить в графической форме.

Задание комплексного числа равносильно заданию двух действительных чисел а, b - действительной и мнимой частей данного комплексного числа. Но упорядеченная пара чисел изображается в декартовой прямоугольной системе координат точкой с координатами Таким образом, эта точка может служить изображением и для комплексного числа z: между комплексными числами и точками координатной плоскости устанавливается взаимно однозначное соответствие. При использовании координатной плоскости для изображения комплексных чисел ось Ох обычно называют действительной осью (так как действительная часть числа принимается за абсциссу точки), а ось Оу - мнимой осью (так как мнимая часть числа принимается за ординату точки). Комплексное число z, изображаемое точкой (а, b), называется аффиксом этой точки. При этом действительные числа изображаются точками, лежащими на действительной оси, а все чисто мнимые числа (при а = 0) - точками, лежащими на мнимой оси. Число нуль изображается точкой О.

На рис. 8 построены изображения чисел .

Два комплексно сопряженных числа изображаются точками, симметричными относительно оси Ох (точки на рис. 8).

Часто с комплексным числом связывают не только точку М, изображающую это число, но и вектор ОМ (см. п. 93), ведущий из О в М; изображение числа вектором удобно с точки зрения геометрического истолкования действия сложения и вычитания комплексных чисел.

На рис. 9, а показано, что вектор, изображающий сумму комплексных чисел получается как диагональ параллелограмма, построенного на векторах изображающих слагаемые.

Это правило сложения векторов известно как правило параллелограмма (например, для сложения сил или скоростей в курсе физики). Вычитание может быть сведено к сложению с противоположным вектором (рис. 9, б).

Как известно (п. 8), положение точки на плоскости можно задавать также ее полярными координатами Тем самым и комплексное число - аффикс точки также определится заданием Из рис. 10 ясно, что является в то же время модулем комплексного числа : полярный радиус точки, изображающей число , равен модулю этого числа.

Полярный угол точки М называют аргументом числа , изображаемого этой точкой. Аргумент комплексного числа (как и полярный угол точки) определен неоднозначно; если - одно из его значений, то все его значения выражаются формулой

Все значения аргумента в совокупности обозначаются символом .

Итак, всякому комплексному числу может быть поставлена в соответствие пара действительных чисел: модуль и аргумент данного числа, причем аргумент определяется неоднозначно. Напротив, заданным модулю и аргументу отвечает единственное число , имеющее данные модуль и аргумент. Особыми свойствами обладает число нуль: его модуль равен нулю, аргументу не приписывается никакого определенного значения.

Для достижения однозначности в определении аргумента комплексного числа можно условиться одно из значений аргумента называть главным. Его обозначают символом . Обычно в качестве главного значения аргумента выбирается значение, удовлетворяющее неравенствам

(в других случаях неравенствам ).

Обратим еще внимание на значения аргумента действительных и чисто мнимых чисел:

Действительная и мнимая части комплексного числа (как декартовы координаты точки) выражаются через его модуль и аргумент (полярные координаты точки) по формулам (8.3):

и комплексное число может быть записано в следующей тригонометрической форме.

Комплексные числа, их изображение на плоскости. Алгебраические операции над комплексными числами. Комплексное сопряжение. Модуль и аргумент комплексного числа. Алгебраическая и тригонометрическая формы комплексного числа. Корни из комплексных чисел. Показательная функция комплексного аргумента. Формула Эйлера. Показательная форма комплексного числа.

При изучении одного из основных приемов интегрирования: интегрирования рациональных дробей – требуется для проведения строгих доказательств рассматривать многочлены в комплексной области. Поэтому изучим предварительно некоторые свойства комплексных чисел и операций над ними.

Определение 7.1. Комплексным числом z называется упорядоченная пара действительных чисел (а,b) : z = (a,b) (термин «упорядоченная» означает, что в записи комплексного числа важен порядок чисел а и b: (a,b)≠(b,a)). При этом первое число а называется действительной частью комплексного числа z и обозначается a = Re z, а второе число b называется мнимой частью z: b = Im z.

Определение 7.2. Два комплексных числа z 1 = (a 1 , b 1) и z 2 = (a 2 , b 2) равны тогда и только тогда, когда у них равны действительные и мнимые части, то есть a 1 = a 2 , b 1 = b 2 .

Действия над комплексными числами.

1. Суммой комплексных чисел z 1 = (a 1 , b 1 ) и z 2 = (a 2 , b 2 z = (a,b ) такое, что a = a 1 + a 2 , b = b 1 + b 2 . Свойства сложения: а) z 1 + z 2 = z 2 + z 1 ; б) z 1 + (z 2 + z 3 ) = (z 1 + z 2 ) + z 3 ; в) существует комплексное число 0 = (0,0): z + 0 = z для любого комплексного числа z.

2. Произведением комплексных чисел z 1 = (a 1 , b 1 ) и z 2 = (a 2 , b 2 ) называется комплексное число z = (a,b ) такое, что a = a 1 a 2 – b 1 b 2 , b = a 1 b 2 + a 2 b 1 . Свойства умножения: а) z 1 z 2 = z 2 z 1 ; б) z 1 (z 2 z 3 ) = (z 1 z 2 ) z 3 , в) (z 1 + z 2 ) z 3 = z 1 z 3 + z 2 z 3 .

Замечание. Подмножеством множества комплексных чисел является множество действительных чисел, определяемых как комплексные числа вида (а, 0). Можно убедиться, что при этом определение операций над комплексными числами сохраняет известные правила соответствующих операций над действительными числами. Кроме того, действительное число 1 = (1,0) сохраняет свое свойство при умножении на любое комплексное число: 1∙ z = z.

Определение 7.3. Комплексное число (0, b ) называется чисто мнимым . В частности, число (0,1) называют мнимой единицей и обозначают символом i .

Свойства мнимой единицы:

1) i∙i=i ² = -1; 2) чисто мнимое число (0,b ) можно представить как произведение действительного числа (b, 0) и i : (b, 0) = b∙i.

Следовательно, любое комплексное число z = (a,b) можно представить в виде: (a,b) = (a,0) + (0,b) = a + ib.


Определение 7.4. Запись вида z = a + ib называют алгебраической формой записи комплексного числа.

Замечание. Алгебраическая запись комплексных чисел позволяет производить операции над ними по обычным правилам алгебры.

Определение 7.5. Комплексное число называется комплексно сопряженным числу z = a + ib.

3. Вычитание комплексных чисел определяется как операция, обратная сложению: z = (a,b ) называется разностью комплексных чисел z 1 = (a 1 , b 1 ) и z 2 = (a 2 , b 2 ), если a = a 1 – a 2 , b = b 1 – b 2 .

4. Деление комплексных чисел определяется как операция, обратная умножению: число z = a + ib называется частным от деления z 1 = a 1 + ib 1 и z 2 = a 2 + ib 2 (z 2 ≠ 0), если z 1 = z∙z 2 . Следовательно, действительную и мнимую части частного можно найти из решения системы уравнений: a 2 a – b 2 b = a 1 , b 2 a + a 2 b = b 1 .

Геометрическая интерпретация комплексных чисел .

Комплексное число z = (a,b ) можно представить в виде точки на плоскости с координатами (a,b ) или вектора с началом в начале координат и концом в точке (a,b ).

При этом модуль полученного вектора называется модулем комплексного числа, а угол, образованный вектором с положительным направлением оси абсцисс,- аргументом числа. Учитывая, что a = ρ cos φ, b = ρ sin φ, где ρ = | z | - модуль z, а φ = arg z – его аргумент, можно получить еще одну форму записи комплексного числа:

Определение 7.6. Запись вида

z = ρ (cos φ + i sin φ ) (7.1)

называется тригонометрической формой записи комплексного числа.

В свою очередь, модуль и аргумент комплексного числа можно выразить через а и b : . Следовательно, аргумент комплексного числа определен не однозначно, а с точностью до слагаемого, кратного 2π.

Легко убедиться, что операция сложения комплексных чисел соответствует операции сложения векторов. Рассмотрим геометрическую интерпретацию умножения. Пусть тогда

Следовательно, модуль произведения двух комплексных чисел равен произведению их модулей, а аргумент – сумме их аргументов. Соответственно, при делении модуль частного равен отношению модулей делимого и делителя, а аргумент – разности их аргументов.

Частным случаем операции умножения является возведение в степень:

- формула Муавра .

Используя полученные соотношения, перечислим основные свойства комплексно сопряженных чисел:

Геометрическое изображение комплексных чисел. Тригонометрическая форма комплексного числа.

2015-06-04

Действительная и мнимая ось
Аргумент комплексного числа
Главный аргумент комплексного числа
Тригонометрическая форма комплексного числа

Задание комплексного числа $z = a+bi$ равносильно заданию двух действительных чисел $a,b$ - действительной и мнимой частей данного комплексного числа. Но упорядоченная пара чисел $(a,b)$ изображается в декартовой прямоугольной системе координат точкой с координатами $(a, b)$. Таким образом, эта точка может служить изображением и для комплексного числа $z$: между комплексными числами и точками координатной плоскости устанавливается взаимно однозначное соответствие.

При использовании координатной плоскости для изображения комплексных чисел ось $Ox$ обычно называют действительной осью (так как действительная часть числа принимается за абсциссу точки), а ось $Oy$ - мнимой осью (так как мнимая часть числа принимается за ординату точки).


Комплексное число $z$, изображаемое точкой $M(a,b)$, называется аффиксом этой точки. При этом действительные числа изображаются точками, лежащими на действительной оси, а все чисто мнимые числа $bi$(при $a = 0$) - точками, лежащими на мнимой оси. Число нуль изображается точкой O.


Рис.1
На рис. 1 построены изображения чисел $z_{1} = 2 + 3i, z_{2}=1 =1,z_{3} = 4i, z_{4} = -4 + i, z_{5} = -2, z_{6} = - 3 – 2i, z_{7} = -5i, z_{8} = 2 – 3i$.

Два комплексно сопряженных числа изображаются точками, симметричными относительно оси $Ox$ (точки $z_{1}$ и $z_{8}$ на рис. 1).


Рис. 2
Часто с комплексным числом $z$ связывают не только точку $M$, изображающую это число, но и вектор $\vec{OM}$, ведущий из $O$ в $M$; изображение числа $z$ вектором удобно с точки зрения геометрического истолкования действия сложения и вычитания комплексных чисел. На рис. 2, а показано, что вектор, изображающий сумму комплексных чисел $z_{1}, z_{2}$, получается как диагональ параллелограмма, построенного на векторах $\vec{OM_{1}}, \vec{OM_{2}}$, изображающих слагаемые. Это правило сложения векторов известно как правило параллелограмма (например, для сложения сил или скоростей в курсе физики). Вычитание может быть сведено к сложению с противоположным вектором (рис. 2, б).


Рис. 3
Как известно, положение точки на плоскости можно задавать также ее полярными координатами $r, \phi$. Тем самым и комплексное число - аффикс точки также определится заданием $r$ и $\phi$. Из рис. 3 ясно, что $r = OM = \sqrt{x^{2} + y^{2}}$ является в то же время модулем комплексного числа $z$: полярный радиус точки, изображающей число $z$, равен модулю этого числа.

Полярный угол точки $M$ называют аргументом числа $z$, изображаемого этой точкой.


Аргумент комплексного числа (как и полярный угол точки) определен неоднозначно; если $\phi_{0}$ -одно из его значений, то все его значения выражаются формулой
$\phi = \phi_{0} + 2k \pi (k = 0, \pm 1, \pm 2, \cdots)$

Все значения аргумента в совокупности обозначаются символом $Arg \: z$.

Итак, всякому комплексному числу может быть поставлена в соответствие пара действительных чисел: модуль и аргумент данного числа, причем аргумент определяется неоднозначно. Напротив, заданным модулю $|z| = r$ и аргументу $\phi$ отвечает единственное число $z$, имеющее данные модуль и аргумент. Особыми свойствами обладает число нуль: его модуль равен нулю, аргументу не приписывается никакого определенного значения.

Для достижения однозначности в определении аргумента комплексного числа можно условиться одно из значений аргумента называть главным. Его обозначают символом $arg \: z$. Обычно в качестве главного значения аргумента выбирается значение, удовлетворяющее неравенствам
$0 \leq arg \: z (в других случаях неравенствам $- \pi


Обратим еще внимание на значения аргумента действительных и чисто мнимых чисел:
$arg \: a = \begin{cases} 0, & \text{если} a>0, \\
\pi, & \text{если} a $arg \: bi = \begin{cases} \frac{\pi}{2}, & \text{если} b > 0, \\
\frac{3 \pi}{2}, & \text{если} b

Действительная и мнимая части комплексного числа (как декартовы координаты точки) выражаются через его модуль и аргумент (полярные координаты точки) по формулам:
$a = r \cos \phi, b = r \sin \phi$, (1)
и комплексное число может быть записано в следующей тригонометрической форме:
$z = r(\cos \phi \phi + i \sin \phi)$ (2)
(запись числа в виде $z = a + bi$ будем называть записью в алгебраической форме).


Условие равенства двух чисел, заданных в тригонометрической форме, таково: два числа $z_{1}$ и $z_{2}$ равны тогда и только тогда, когда их модули равны, а аргументы равны или отличаются на целое число периодов $2 \pi$.

Переход от записи числа в алгебраической форме к его записи в тригонометрической форме и обратно совершается по формулам (4):
$r = \sqrt{a^{2} + b^{2}}, \cos \phi = \frac{a}{r}= \frac{a}{\sqrt{a^{2} + b^{2}}}, \sin \phi = \frac{b}{r} = \frac{b}{\sqrt{a^{2} + b^{2}}}, tg \phi = \frac{b}{a}$ (3)
и формулам (1). При определении аргумента (его главного значения) можно пользоваться значением одной из тригонометрических функций $\cos \phi$ или $\sin \phi$ и учитывать знак второй.

Пример. Записать в тригонометрической форме следующие числа:
а)$6 + 6i$; б) $3i$; в) $-10$.
Решение, а) Имеем
$r = \sqrt{6^{2} + (-6)^{2}} = 6 \sqrt{2}$,
$\cos \phi = \frac{6}{6 \sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$,
$\sin \phi = - \frac{6}{6 \sqrt{2}} = - \frac{1}{\sqrt{2}} = - \frac{\sqrt{2}}{2}$,
откуда $\phi = \frac{7 \pi}{4}$, и, следовательно,
$6-6i = 6 \sqrt{2} \left (\cos \frac{7 \pi}{4} + i \sin \frac{7 \pi}{4} \right)$;
б) $r = 3, \cos \phi = 0, \sin \phi = 1, \phi = \pi /2$;
$3i = 3 \left (\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$
в) $r = 10, \cos \phi = -1, \sin \phi = 0, \phi = \pi$;
$-10 = 10 (\cos \pi + i \sin \pi)$



Вам также будет интересно:

ФабЛаб: доступная наука Фаблаб мисис
Вертикальный обрабатывающий центр фирмы Haas — это не то оборудование, которое можно...
Пирогенал: свойства и применение
МНН: Липополисахарид бактериальный, выделенный из клеток Salmonella Производитель:...
Лекарственный справочник гэотар Нексиум способ применения
Препарат Нексиум - это ингибитор протонной помпы с высокой эффективностью действия в...
Сироп «Конвулекс» – инструкция по применению
Конвулекс – линейка противоэпилептических средств на основе вальпроевой кислоты. Препараты...