Энциклопедия вирусных инфекций

Счастливый стакан Игра «Налей воды в стакан»

Вредно ли пить безалкогольное пиво Выводы проведенных тестирований

Утка с яблоками и апельсинами в духовке

Сеголен Руаяль: фото, биография, личная жизнь, дети Метрессы президента Олланда и разброд в социалистической партии

Блюда из мяса. Мясо и мясные продукты. основным сырьем для мясной промышленности, являются сельскохозяйственные животные (убойный скот) и домашняя птица. Презентация интересные факты о мясе

Почему на Пасху говорят "Христос воскрес?

История государства израиль Иерусалим и Старый город, оказалась аннексированной Иорданией

Прививка акдс или пентаксим: отличия, что лучше Прививка акдс альтернатива

Автоматическое определение движка форума

Китайская методика познания себя «9 звезд»: узнай правду о своей судьбе!

Баня в мешке с березовыми листьями

Происхождение слова «сура»

О первых днях после зачатия: что происходит в организме женщины в самом начале беременности?

Готовый бизнес-план: магазин разливных напитков

Солодка, лечение солодкой, лечение корнем солодки Корень солодки сбор осень

Как округлять большие числа. Правила округления чисел

Округление чисел - простейшая математическая операция. Чтобы уметь правильно округлять числа, необходимо знать три правила.

Правило 1

Когда мы округляем число до какого-то разряда, мы должны избавиться от всех цифр справа от этого разряда.

Например, нам нужно округлить число 7531 до сотен. В этом числе пять сотен. Справа от этого разряда стоят цифры 3 и 1. Превращаем их в нули и получаем число 7500. То есть, округлив число 7531 до сотен, мы получили 7500.

При округлении дробных чисел все происходит так же, только лишние разряды можно просто отбросить. Допустим, нам нужно округлить число 12,325 до десятых. Для этого после запятой мы должны оставить одну цифру - 3, а все цифры, стоящие справа, отбрасываем. Результат округления числа 12,325 до десятых - 12,3.

Правило 2

Если справа от оставляемой цифры отбрасываемая цифра равна 0, 1, 2, 3 или 4, то цифра, которую мы оставляем, не меняется.

Это правило сработало в двух предыдущих примерах.

Так, при округлении числа 7531 до сотен самой близкой к оставляемой цифре из отбрасываемых была тройка. Поэтому цифра, которую мы оставили, - 5 - не изменилась. Результатом округления стало число 7500.

Точно так же при округлении числа 12,325 до десятых цифрой, которую мы отбросили после тройки, была двойка. Поэтому самая правая из оставленных цифр (тройка) при округлении не изменилась. Получилось 12,3.

Правило 3

Если же самая левая из отбрасываемых цифр равна 5, 6, 7, 8 или 9, то разряд, до которого мы округляем, увеличивается на единицу.

Например, нужно округлить число 156 до десятков. В этом числе 5 десятков. В разряде единиц, от которого мы собираемся избавиться, стоит цифра 6. Значит, разряд десятков нам следует увеличить на единицу. Поэтому при округлении числа 156 до десятков мы получим 160.

Рассмотрим пример с дробным числом. Например, мы собираемся округлить 0,238 до сотых. По правилу 1 мы должны отбросить восьмёрку, которая стоит справа от разряда сотых. А по правилу 3 нам придётся увеличить тройку в разряде сотых на один. В итоге, округлив число 0,238 до сотых, мы получим 0,24.

Многие люди интересуются, как округлять числа. Эта необходимость часто возникает у людей, которые свою жизнь связывают с бухгалтерией или другими видами деятельности, где требуются расчеты. Округление может производиться до целых, десятых и так далее. И необходимо знать, как это делать правильно, чтобы расчеты были более менее точными.

А что такое вообще круглое число? Это то, которое заканчивается на 0 (по большей части). В обыденной жизни умение округлять числа значительно облегчает походы по магазинам. Стоя у кассы, можно приблизительно прикинуть общую стоимость покупок, сравнить, сколько стоит килограмм одноименного товара в различных по весу пакетах. С числами, приведенными к удобной форме, легче производить устные расчеты, не прибегая к помощи калькулятора.

Зачем округляются числа?

Любые цифры человек склонен округлять в тех случаях, когда нужно выполнять более упрощенные операции. Например, дыня весит 3,150 килограммов. Когда человек будет рассказывать своим знакомым о том, сколько граммов имеет южный плод, он может прослыть не очень интересным собеседником. Значительно лаконичнее звучат фразы типа "Вот я купил трехкилограмовую дыню" без вникания во всякие ненужные детали.

Интересно, что даже в науке нет необходимости всегда иметь дело с максимально точными числами. А если речь идет о периодических бесконечных дробях, которые имеют вид 3,33333333...3, то это становится невозможным. Поэтому самым логичным вариантом будет обычное округление их. Как правило, результат после этого искажается незначительно. Итак, как округлять числа?

Несколько важных правил при округлении чисел

Итак, если вы захотели округлить число, важно понимать основные принципы округления? Это операция изменения направленная на уменьшение количества знаков после запятой. Чтобы осуществлять данное действие, необходимо знать несколько важных правил:

  1. Если число нужного разряда находится в пределах 5-9, округление осуществляется в большую сторону.
  2. Если число нужного разряда находится в пределах 1-4, округление производится в меньшую сторону.

Например, у нас есть число 59. Нам его нужно округлить. Чтобы это сделать, надо взять число 9 и добавить к нему единицу, чтобы получилось 60. Вот и ответ на вопрос, как округлять числа. А теперь рассмотрим частные случаи. Собственно, мы разобрались, как округлить число до десятков с помощью этого примера. Теперь осталось всего лишь использовать эти знания на практике.

Как округлить число до целых

Очень часто случается так, что имеется необходимость округлить, например, число 5,9. Данная процедура не составляет большого труда. Нужно для начала опустить запятую, и перед нашим взором предстает при округлении уже знакомое нам число 60. А теперь ставим запятую на место, и получаем 6,0. А поскольку нули в десятичных дробях, как правило, опускаются, то получаем в итоге цифру 6.

Аналогичную операцию можно производить и с более сложными числами. Например, как округлять числа типа 5,49 до целых? Здесь все зависит от того, какие цели вы поставите перед собой. Вообще, по правилам математики, 5,49 - это все-таки не 5,5. Поэтому округлить его в большую сторону нельзя. Но можно его округлить до 5,5, после чего уже законным становится округление до 6. Но такая уловка не всегда срабатывает, так что нужно быть предельно осторожным.

В принципе, выше уже был рассмотрен пример правильного округления числа до десятых, поэтому сейчас важно отобразить только основной принип. По сути, все происходит приблизительно таким же образом. Если цифра, которая находится на второй позиции после запятой, находится в пределах 5-9, то она вообще убирается, а стоящая перед ней цифра увеличивается на один. Если же меньше 5, то данная цифра убирается, а предыдущая остается на своем месте.

Например, при 4,59 до 4,6 цифра "9" уходит, а к пятерке прибавляется единица. А вот при округлении 4,41 единица опускается, а четверка остается в незименном виде.

Как используют маркетологи неумение массового потребителя округлять цифры?

Оказывается, большая часть людей на свете не имеет привычки оценить реальную стоимость продукта, что активно эксплуатируют маркетологи. Все знают слоганы акций типа "Покупайте всего за 9,99". Да, мы сознательно понимаем, что это уже по сути десять долларов. Тем не менее наш мозг устроен так, что воспринимает только первую цифру. Так что нехитрая операция приведения числа в удобный вид должно войти в привычку.

Очень часто округление позволяет лучше оценить промежуточные успехи, выражающиеся в численной форме. Например, человек стал зарабатывать 550 долларов в месяц. Оптимист скажет, что это почти 600, пессимист - что это чуть больше 500. Вроде бы разница есть, но мозгу приятнее "видеть", что объект достиг чего-то большего (или наоборот).

Можно привести огромное количество примеров, когда умение округлять оказывается невероятно полезным. Важно проявлять изобретательность и по возможности на загружаться ненужной информацией. Тогда успех будет незамедлительным.

Дробные числа в электронных таблицах Excel можно выводить на экран с разной степенью точности :

  • самый простой способ – на вкладке «Главная » нажимаем кнопки «Увеличить разрядность » или «Уменьшить разрядность »;
  • щелкаем правой кнопкой мыши по ячейке, в раскрывшемся меню выбираем «Формат ячеек… », далее вкладка «Число », выбираем формат «Числовой », определяем, сколько будет десятичных знаков после запятой (по умолчанию предлагается 2 знака);
  • щелкаем ячейку, на вкладке «Главная » выбираем «Числовой », либо идем на «Другие числовые форматы… » и там настраиваем.

Вот как выглядит дробь 0,129, если менять количество десятичных знаков после запятой в формате ячейки:

Обратите внимание, в A1,A2,A3 записано одно и то же значение , меняется только форма представления. При дальнейших расчетах будет использоваться не величина, видимая на экране, а исходная . Начинающего пользователя электронных таблиц это может слегка запутать. Чтобы реально изменить значение, необходимо использовать специальные функции, их в Excel несколько.

Формула округление

Одна из часто применяемых функций округления – ОКРУГЛ . Она работает по стандартным математическим правилам. Выбираем ячейку, щелкаем значок «Вставить функцию », категория «Математические », находим ОКРУГЛ

Определяем аргументы, их два – сама дробь и количество разрядов. Щелкаем «ОК » и смотрим, что получилось.

К примеру, выражение =ОКРУГЛ(0,129;1) даст результат 0,1. Нулевое количество разрядов позволяет избавляться от дробной части. Выбор отрицательного количества разрядов позволяет округлять целую часть до десятков, сотен и так далее. Например, выражение =ОКРУГЛ(5,129;-1) даст 10.

Округляем в большую или меньшую сторону

В Excel представлены и другие средства, позволяющие работать с десятичными дробями. Одно из них – ОКРУГЛВВЕРХ , выдает самое близкое число, большее по модулю. Например, выражение =ОКРУГЛВВЕРХ(-10,2;0) даст -11. Количество разрядов здесь 0, значит, получим целое значение. Ближайшее целое , большее по модулю, – как раз -11. Пример использования:

ОКРУГЛВНИЗ аналогична предыдущей функции, но выдает ближайшее значение, меньшее по модулю. Различие в работе вышеописанных средств видно из примеров :

=ОКРУГЛ(7,384;0) 7
=ОКРУГЛВВЕРХ(7,384;0) 8
=ОКРУГЛВНИЗ(7,384;0) 7
=ОКРУГЛ(7,384;1) 7,4
=ОКРУГЛВВЕРХ(7,384;1) 7,4
=ОКРУГЛВНИЗ(7,384;1) 7,3

Введение.............................................................................................................

ЗАДАЧА № 1. Ряды предпочтительных чисел...............................................

ЗАДАЧА № 2. Округление результатов измерений.......................................

ЗАДАЧА № 3. Обработка результатов измерений.........................................

ЗАДАЧА № 4. Допуски и посадки гладких цилиндрических соединений...

ЗАДАЧА № 5. Допуски формы и расположения...........................................

ЗАДАЧА № 6. Шероховатость поверхности.................................................

ЗАДАЧА № 7. Размерные цепи........................................................................

Список литературы............................................................................................

Задача № 1. Округление результатов измерений

При выполнении измерений важно соблюдать определенные правила округления и записи их результатов в технической документации, так как при несоблюдении этих правил возможны существенные ошибки в интерпретации результатов измерений.

Правила записи чисел

1. Значащие цифры данного числа - все цифры от первой слева, не равной нулю, до последней справа. При этом нули, следующие из множителя 10, не учитывают.

Примеры.

а) Число 12,0 имеет три значащие цифры.

б) Число 30 имеет две значащие цифры.

в) Число 12010 8 имеет три значащие цифры.

г) 0,51410 -3 имеет три значащие цифры.

д) 0,0056 имеет две значащие цифры.

2. Если необходимо указать, что число является точным, после числа указывают слово "точно" или последнюю значащую цифру печатают жирным шрифтом. Например: 1 кВт / ч = 3600 Дж (точно) или 1 кВт / ч = 3600 Дж.

3. Различают записи приближенных чисел по количеству значащих цифр. Например, различают числа 2,4 и 2,40. Запись 2,4 означает, что верны только целые и десятые доли, истинное значение числа может быть, например, 2,43 и 2,38. Запись 2,40 означает, что верны и сотые доли: истинное значение числа может быть 2,403 и 2,398, но не 2,41 и не 2,382. Запись 382 означает, что все цифры верны: если за последнюю цифру ручаться нельзя, то число должно быть записано 3,810 2 . Если в числе 4720 верны лишь две первые цифры, оно должно быть записано в виде: 4710 2 или 4,710 3 .

4. Число, для которого указывают допустимое отклонение, должно иметь последнюю значащую цифру того же разряда, как и последняя значащая цифра отклонения.

Примеры.

а) Правильно: 17,0 + 0,2. Неправильно: 17 + 0,2 или 17,00 + 0,2.

б) Правильно: 12,13+ 0,17. Неправильно: 12,13+ 0,2.

в) Правильно: 46,40+ 0,15. Неправильно: 46,4+ 0,15 или 46,402+ 0,15.

5. Числовые значения величины и её погрешности (отклонения) целесообразно записывать с указанием одной и той же единицы величины. Например: (80,555 + 0,002) кг.

6. Интервалы между числовыми значениями величин иногда целесообразно записывать в текстовом виде, тогда предлог "от" означает "", предлог "до"– "", предлог "свыше" – ">", предлог "менее" – "<":

"d принимает значения от 60 до 100" означает "60d 100",

"d принимает значения свыше 120 менее 150" означает "120 <d < 150",

"d принимает значения свыше 30 до 50" означает "30 <d 50".

Правила округления чисел

1. Округление числа представляет собой отбрасывание значащих цифр справа до определенного разряда с возможным изменением цифры этого разряда.

2. В случае если первая из отбрасываемых цифр (считая слева направо) менее 5, то последнюю сохраняемую цифру не меняют.

Пример: Округление числа 12,23 до трех значащих цифр дает 12,2.

3. В случае если первая из отбрасываемых цифр (считая слева направо) равна 5, то последнюю сохраняемую цифру увеличивают на единицу.

Пример: Округление числа 0,145 до двух цифр дает 0,15.

Примечание . В тех случаях, когда следует учитывать результаты предыдущих округлений, поступают следующим образом.

4. Если отбрасываемая цифра получена в результате округления в меньшую сторону, то последнюю оставшуюся цифру увеличивают на единицу (с переходом при необходимости в следующие разряды) , иначе – наоборот. Это касается и дробных и целых чисел.

Пример: Округление числа 0,25 (полученного в результате предыдущего округления числа 0,252) дает 0,3.

4. В случае если первая из отбрасываемых цифр (считая слева направо) более 5, то последнюю сохраняемую цифру увеличивают на единицу.

Пример: Округление числа 0,156 до двух значащих цифр дает 0,16.

5. Округление выполняют сразу до желаемого количества значащих цифр, а не по этапам.

Пример: Округление числа 565,46 до трех значащих цифр дает 565.

6. Целые числа округляют по тем же правилам, что и дробные.

Пример: Округление числа 23456 до двух значащих цифр дает 2310 3

Числовое значение результата измерения должно оканчиваться цифрой того же разряда, что и значение погрешности.

Пример: Число 235,732 + 0,15 должно быть округлено до 235,73 + 0,15, но не до 235,7 + 0,15.

7. Если первая из отбрасываемых цифр (считая слева направо) меньше пяти, то остающиеся цифры не меняются.

Пример: 442,749+ 0,4 округляется до 442,7+ 0,4.

8. Если первая из отбрасываемых цифр больше или равна пяти, то последняя сохраняемая цифра увеличивается на единицу.

Пример: 37,268 + 0,5 округляется до 37,3 + 0,5; 37,253 + 0,5 должно быть округлено до 37,3 + 0,5.

9. Округление следует выполнять сразу до желаемого числа значащих цифр, поэтапное округление может привести к ошибкам.

Пример: Поэтапное округление результата измерения 220,46+ 4 дает на первом этапе 220,5+ 4 и на втором 221+ 4, в то время как правильный результат округления 220+ 4.

10. Если погрешность средств измерения указывается всего с одной или двумя значащими цифрами, а рассчетное значение погрешности получают с большим числом знаков, в окончательном значении рассчитанной погрешности должны быть оставлены соответственно только первые одна или две значащие цифры. При этом, если полученное число начинается с цифр 1 или 2, то отбрасывание второго знака приводит к очень большой ошибке (до 3050 %), что недопустимо. Если же полученное число начинается с цифры 3 и более, например, с цифры 9, то сохранение второго знака, т.е. указание погрешности, например, 0,94 вместо 0,9, является дезинформацией, так как исходные данные не обеспечивают такой точности.

Исходя из этого на практике установилось такое правило: если полученное число начинается со значащей цифры, равной или большей 3, то в нем сохраняется лишь она одна; если же оно начинается со значащих цифр, меньших 3, т.е. с цифр 1 и 2, то в нем сохраняют две значащих цифры. В соответствии с этим правилом установлены и нормируемые значения погрешностей средств измерений: в числах 1,5 и 2,5 % указываются две значащих цифры, но в числах 0,5; 4; 6 % указывается лишь одна значащая цифра.

Пример: На вольтметре класса точности 2,5 с пределом измерений х К = 300 В был получен отсчет измеряемого напряжения х = 267,5 В. В каком виде должен быть записан результат измерения в отчете?

Расчет погрешности удобнее вести в следующем порядке: вначале необходимо найти абсолютную погрешность, а затем – относительную. Абсолютная погрешность х =  0 х К /100, для приведенной погрешности вольтметра  0 = 2,5 % и пределов измерения (диапазона измерения) прибора х К = 300 В: х = 2,5300/100 = 7,5 В ~ 8 В; относительная погрешность  = х 100/х = 7,5100/267,5 = 2,81 % ~ 2,8 % .

Так как первая значащая цифра значения абсолютной погрешности (7,5 В) больше трех, то это значение должно быть округлено по обычным правилам округления до 8 В, но в значении относительной погрешности (2,81 %) первая значащая цифра меньше 3, поэтому здесь должны быть сохранены в ответе два десятичных разряда и указано  = 2,8 %. Полученное значение х = 267,5 В должно быть округлено до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности, т.е. до целых единиц вольт.

Таким образом, в окончательном ответе должно быть сообщено: "Измерение произведено с относительной погрешностью = 2,8 % . Измеренное напряжениеХ = (268+ 8) В".

При этом более наглядно указать пределы интервала неопределенности измеренной величины в виде Х = (260276) В или 260 ВX276 В.

Настоящий стандарт СЭВ устанавливает правила записи и округления чисел, выраженных в десятичной системе счисления.

Правила записи и округления чисел, установленные в настоящем стандарте СЭВ, предназначены для применения в нормативно-технической, конструкторской и технологической документации.

Настоящий стандарт СЭВ не распространяется на специальные правила округления, установленные в других стандартах СЭВ.

1. ПРАВИЛА ЗАПИСИ ЧИСЕЛ

1.1. Значащие цифры данного числа - это все цифры от первой слева, не равной нулю, до последней записанной цифры справа. При этом нули, следующие из множителя 10 n , не учитываются.

1. Число 12,0

имеет три значащие цифры;

2. Число 30

имеет две значащие цифры;

3. Число 120·10 3

имеет три значащие цифры;

4. Число 0,514·10

имеет три значащие цифры;

5. Число 0,0056

имеет две значащие цифры.

1.2. Когда необходимо указать, что число является точным, после числа должно быть указано слово «точно» или же последняя значащая цифра печатается жирным шрифтом

Пример. В печатном тексте:

1 кВт·ч = 3 600 000 Дж (точно), или = 3600000 Дж

1.3. Следует различать записи приближенных чисел по количеству значащих цифр.

Примеры:

1. Следует различать числа 2,4 и 2,40. Запись 2,4 означает, что верны только цифры целых и десятых; истинное значение числа может быть например 2,43 и 2,38. Запись 2,40 означает, что верны и сотые доли числа; истинное число может быть 2,403 и 2,398, но не 2,421 и не 2,382.

2. Запись 382 означает, что все цифры верны; если за последнюю цифру ручаться нельзя, то число должно быть записано 3,8·10 2 .

3. Если в числе 4720 верны лишь две первые цифры оно должно быть записано 47·10 2 или 4,7·10 3 .

1.4. Число, для которого указывается допускаемое отклонение, должно иметь последнюю значащую цифру того же разряда как и последняя значащая цифра отклонения.

Примеры:

1.5. Числовые значения величины и ее погрешности (отклонения) целесообразно записывать с указанием одной и той же единицы физических величин.

Пример. 80,555±0,002 кг

1.6. Интервалы между числовыми значениями величин следует записывать:

От 60 до 100 или от 60 до 100

Свыше 100 до 120 или свыше 100 до 120

Свыше 120 до 150 или свыше 120 до 150.

1.7. Числовые значения величин должны указываться в стандартах с одинаковым числомразрядов, которое необходимо для обеспечения требуемых эксплуатационных свойств и качества продукции. Запись числовых значений величин до первого, второго, третьего и т. д. десятичного знака для различных типоразмеров, видов марок продукции одного названия, как правило, должна быть одинаковой. Например, если градация толщины стальной горячекатаной ленты 0,25 мм, то весь ряд толщин ленты должен быть указан с точностью до второго десятичного знака.

В зависимости от технической характеристики и назначения продукции количество десятичных знаков числовых значений величин одного и того же параметра, размера, показателя или нормы может иметь несколько ступеней (групп) и должно быть одинаковым только внутри этой ступени (группы).

2. ПРАВИЛА ОКРУГЛЕНИЯ

2.1. Округление числа представляет собой отбрасывание значащих цифр справа до определенного разряда с возможным изменением цифры этого разряда.

Пример. Округление числа 132,48 до четырех значащих цифр будет 132,5.

2.2. В случае, если первая из отбрасываемых цифр (считая слева направо) меньше 5, то последняя сохраняемая цифра не меняется.

Пример. Округление числа 12,23 до трех значащих цифр дает 12,2.

2.3. В случае, если первая из отбрасываемых цифр (считая слева направо) равна 5, то последняя сохраняемая цифра увеличивается на единицу.

Пример. Округление числа 0,145 до двух значащих цифр дает 0,15.

Примечание. В тех случаях, когда следует учитывать результаты предыдущих округлений, следует поступать следующим образом:

1) если отбрасываемая цифра получилась в результате предыдущего округления в большую сторону, то последняя сохраняемая цифра сохраняется;

Пример. Округление до одной значащей цифры числа 0,15 (полученного после округления числа 0,149) дает 0,1.

2) если отбрасываемая цифра получилась в результате предыдущего округления в меньшую сторону, то последняя оставшаяся цифра увеличивается на единицу (с переходом при необходимости в следующие разряды).

Пример. Округление числа 0,25 (полученного в результате предыдущего округления числа 0,252) дает 0,3.

2.4. В случае, если первая из отбрасываемых цифр (считая слева направо) больше 5, то последняя сохраняемая цифра увеличивается на единицу.

Пример. Округление числа 0,156 до двух значащих цифр дает 0,16.

2.5. Округление следует выполнять сразу до желаемого количества значащих цифр, а не по этапам.

Пример. Округление числа 565,46 до трех значащих цифр производится непосредственно на 565. Округление по этапам привело бы к:

565,46 в I этапе - к 565,5,

а во II этапе - 566 (ошибочно).

2.6. Целые числа округляют по тем же правилам, как и дробные.

Пример. Округление числа 12 456 до двух значащих цифр дает 12·10 3 .

Тема 01.693.04-75.

3. Стандарт СЭВ утвержден на 41-м заседании ПКС.

4. Сроки начала применения стандарта СЭВ:

Страны - члены СЭВ

Срок начала применения стандарта СЭВ в договорно-правовых отношениях по экономическому и научно-техническому сотрудничеству

Срок начала применения стандарта СЭВ в народном хозяйстве

НРБ

Декабрь 1979 г.

Декабрь 1979 г.

ВНР

Декабрь 1978 г.

Декабрь 1978 г.

ГДР

Декабрь 1978 г.

Декабрь 1978 г.

Республика Куба

МНР

ПНР

СРР

СССР

Декабрь 1979 г.

Декабрь 1979 г.

ЧССР

Декабрь 1978 г.

Декабрь 1978 г.

5. Срок первой проверки - 1981 г., периодичность проверки - 5 лет.



Вам также будет интересно:

ФабЛаб: доступная наука Фаблаб мисис
Вертикальный обрабатывающий центр фирмы Haas — это не то оборудование, которое можно...
Пирогенал: свойства и применение
МНН: Липополисахарид бактериальный, выделенный из клеток Salmonella Производитель:...
Лекарственный справочник гэотар Нексиум способ применения
Препарат Нексиум - это ингибитор протонной помпы с высокой эффективностью действия в...
Сироп «Конвулекс» – инструкция по применению
Конвулекс – линейка противоэпилептических средств на основе вальпроевой кислоты. Препараты...