Пути регуляции обмена углеводов крайне разнообразны. На любых уровнях организации живого углеводный обмен регулируется факторами, влияющими на активность ферментов, участвующих в реакциях углеводного обмена. К этим факторам относятся: концентрация субстратов, содержание продуктов (метаболитов) отдельных реакций, кислородный режим, температура, проницаемость биологических мембран, концентрация коферментов, необходимых для отдельных реакций, и т. д. По ходу изложения материала в данной главе мы старались показать влияние перечисленых выше факторов на активность ферментных систем углеводного обмена.
У человека и животных на всех стадиях синтеза и распада углеводов регуляция углеводного обмена осуществляется с участием ЦНС и гормонов.
Например, установлено, что падение концентрации глюкозы в крови ниже 3,3-3,4 ммоль/л (60-70 мг/100 мл) приводит к рефлекторному возбуждению высших метаболических центров, расположенных в гипоталамусе. Возбуждение, возникающее в ЦНС, быстро распространяется по нервным путям в спинном мозгу, переходит в симпатический ствол и по симпатическому нерву достигает печени. В результате часть гликогена печени распадается с образованием глюкозы. Концентрация глюкозы в крови при этом повышается. В регуляции углеводного обмена ЦНС особая роль принадлежит ее высшему отделу - коре головного мозга. Наряду с ЦНС важное влияние на содержание глюкозы в крови оказывают гормональные факторы, т. е. регуляция уровня сахара в крови осуществляется ЦНС не только путем прямого воздействия на печень, но через ряд эндокринных желез.
Нарушения углеводного обмена
При ряде состояний можно наблюдать повышение содержания сахара в крови - гипергликемию, а также понижение концентрации сахара - гипогликемию.
Гипергликемия
Гипергликемия является довольно частым симптомом при различных заболеваниях, прежде всего связанных с поражением эндокринной системы.
Сахарный диабет . В регуляции гликолиза и глюконеогенеза большую роль играет инсулин. При недостаточности инсулина возникает заболевание, которое носит название сахарного диабета. Повышается концентрация глюкозы в крови (гипергликемия), появляется глюкоза в моче (глюкозурия) и уменьшается содержание гликогена в печени. При этом мышечная ткань утрачивает способность утилизировать глюкозу крови. В печени при общем снижении интенсивности биосинтетических процессов (биосинтеза белков, синтеза жирных кислот из продуктов распада глюкозы) наблюдается усиленный синтез ферментов глюконеогеназа. При введении инсулина больным диабетом происходит коррекция метаболических сдвигов: нормализуется проницаемость мембран мышечных клеток для глюкозы, восстанавливается соотношение между гликолизом и глюконеогенезом. Инсулин контролирует эти процессы на генетическом уровне как индуктор синтеза ключевых ферментов гликолиза: гексокиназы, фосфофруктокиназы и пируваткиназы. Инсулин также индуцирует синтез гликогенсинтазы. Одновременно инсулин действует как репрессор синтеза ключевых ферментов глюконеогенеза. Заметим, что индукторами синтеза ферментов глюконеогенеза служат глюкокортикоиды. В связи с этим при инсулярной недостаточности и при сохранении или даже повышении инкреции кортикостероидов (в частности, при диабете) устранение влияния инсулина приводит к резкому повышению синтеза и концентрации ферментов глюконеогенеза, особенно фосфоенол-пируваткарбоксикиназы, определяющей возможность и скорость глюконеогенеза в печени и почках.
Развитие гипергликемии при диабете можно рассматривать также как результат возбуждения метаболических центров в ЦНС импульсами с хеморецепторов клеток, испытывающих энергетический голод в связи с недостаточным поступлением глюкозы в клетки ряда тканей.
Гипергликемия может возникнуть не только при заболевании поджелудочной железы, но и в результате расстройств функции других эндокринных желез, участвующих в регуляции углеводного обмена. Так, например, гипергликемия может наблюдаться при гипофизарных заболеваниях, при опухолях коры надпочечников, гиперфункции щитовидной железы. Гипергликемий иногда появляется во время беременности. Наконец, гипергликемия может встречаться также при органических поражениях ЦНС, при расстройствах мозгового кровообращения или сопровождать заболевания печени воспалительного или дегенеративного характера. Поддержание постоянства уровня сахара крови, как уже отмечалось, является важнейшей функцией печени, резервные возможности ее в этом направлении весьма велики, поэтому гипергликемия, связанная с нарушением функции печени, выявляется обычно лишь при тяжелых поражениях печени.
Большой клинический интерес представляет изучение реактивности организма на сахарную нагрузку у здорового и больного человека. В связи с этим в клинике довольно часто применяют многократное исследование уровня сахара обычно после приема per os 50 или 100 г глюкозы, растворенной в теплой воде,- так называемые сахарные кривые. При оценке сахарных кривых обращают внимание на время максимального подъема, высоту этого подъема и время возврата концентрации сахара к исходному уровню. Для оценки сахарных кривых введено несколько показателей, из которых наиболее важное значение имеет коэффициент Бодуэна: ((B-A) / A) x 100%, где А - уровень сахара в крови натощак; В - максимальное содержание сахара в крови после нагрузки глюкозой. В норме этот коэффициент составляет около 50%. Цифры, превышающие 80%, говорят о серьезном нарушении углеводного обмена.
Гипогликемия
Гипогликемия нередко связана с понижением функций тех эндокринных желез, повышение функции которых приводит, как это было отмечено выше, к гипергликемии. В частности, гипогликемию можно наблюдать при гипофизарной кахексии, аддисоновой болезни, гипотиреозе. Резкое снижение сахара в крови отмечается при аденомах островковой ткани поджелудочной железы вследствие повышенной продукции инсулина β-клетками островков Лангерганса. Кроме того, гипогликемия может быть вызвана голоданием, продолжительной физической работой, приемом β-ганглиоблокаторов. Низкий уровень сахара в крови иногда отмечается при беременности, лактации.
Гипогликемия может возникнуть также при введении больным сахарным диабетом больших доз инсулина. Гипогликемия, как правило, сопровождает почечную глюкозурию, возникающую вследствие снижения почечного порога для сахара.
Глюкозурия
Чаще всего присутствие глюкозы в моче (глюкозурия) является результатом расстройства углеводного обмена на почве патологических изменений в поджелудочной железе (сахарный диабет, острый панкреатит и т. д.). Реже встречается глюкозурия почечного происхождения, связанная с недостаточностью резорбции глюкозы в почечных канальцах. Как временное явление глюкозурия может возникнуть при некоторых острых инфекционных и нервных заболеваниях, после приступов эпилепсии, сотрясения мозга.
Отравления морфином, стрихнином, хлороформом, фосфором и др. также обычно сопровождаются глюкозурией. Наконец, необходимо помнить о глюкозурии алиментарного происхождения, глюкозурии беременных и глюкозурии на почве нервных стрессовых состояний (эмоциональная глюкозурия).
Изменение углеводного обмена
при гипоксических состояниях
Отставание окисления пирувата от интенсивности гликолиза наблюдается чаще всего при гипоксических состояниях, обусловленных различными нарушениями кровообращения или дыхания, высотной болезнью, анемией, понижением активности системы тканевых окислительных ферментов при некоторых инфекциях и интоксикациях, гипо- и авитаминозах, а также развивается в результате относительной гипоксии при чрезмерной мышечной работе.
При усилении гликолиза происходит накопление пирувата и лактата в крови, что сопровождается обычно изменением кислотно-основного состояния, уменьшением щелочных резервов.
Увеличение содержания лактата и пирувата в крови может наблюдаться также при поражениях паренхимы печени (поздние стадии гепатита, цирроз печени и т. п.) в результате торможения процессов глюконеогенеза в печени.
Таблица 28. Типы гликогенозов и их характеристика | |||
Тип гликогеном и название болезни | Фермент с нарушенной активностью | Структура гликогена | Основные органы ткани и клетки, депонирующие гликоген |
I тип Болезнь Гирке | Глюкозо-6-фосфатаза | Нормальная | Печень, почки |
II тип Болезнь Помпе | Кислая α-1,4-глюкозидаза | " | Печень, селезенка, почки, мышцы, нервная ткань, эритрициты |
III тип Болезнь Форбса | Амило-(1-->6)-глюкозидаза | Короткие многочисленные внешние ветви (лимитдекстрин) | Печень, мышцы, лейкоциты, эритроциты |
IV тип Болезнь Андерсена | Гликоген-ветвящий фермент | Длинные внешние и внутренние ветви с малым числом точек ветвления (амилопектин) | Печень, мышцы, лейкоциты |
V тип Болезнь Мак-Ардла | Фосфорилаза мышц | Нормальная | Скелетная мускулатура |
VI тип Болезнь Херса | Фосфорилаза печени | " | Печень, лейкоциты |
VII тип Болезнь Томсона | Фосфоглюкомутаза | " | Печень и (или) мышцы |
VIII тип Болезнь Тарун | Фосфофруктокиназа | " | Мышцы, эритроциты |
IX тип Болезнь Хага | Киназа фосфорилазы "в" | " | Печень |
Гликогенозы
Нарушения межуточного обмена углеводов.
Нарушения синтеза и распада гликогена.
Нарушения всасывания углеводов.
Патология углеводного обмена.
Роль инсулина в обмене углеводов.
Гормональная регуляция углеводного обмена.
План изложения.
Лекция №18.
Принципы составления пищевых рационов
Питание должно точно соответствовать потребностям организма в пластических веществах и энергии, минеральных солях, витаминах и воде, обеспечивать нормальную жизнедеятельность, хорошее самочувствие, высокую работоспособность, сопротивляемость инфекциям, рост и развитие организма. При составлении пищевого рациона (т. е. количества и состава продуктов питания, необходимых человеку в сутки) следует соблюдать ряд принципов.
· Калорийность пищевого рациона должна соответствовать энергетическим затратам организма, которые определяются видом трудовой деятельности.
· Учитывается калорическая ценность питательных веществ, для этого используются специальные таблицы, в которых указано процентное содержание в продуктах белков, жиров и углеводов и калорийность 100 г продукта.
· Используется закон изодинамии питательных веществ, т. е. взаимозаменяемость белков, жиров и углеводов, исходя из их энергетической ценности. Например, 1 г жира (9,3 ккал) можно заменить 2,3 г белка или углеводов. Однако такая замена возможна только на короткое время, так как питательные вещества выполняют не только энергетическую, но и пластическую функцию.
· В пищевом рационе должно содержаться оптимальное для данной группы работников количество белков, жиров и углеводов, например, для работников 1-й группы в суточном рационе должно быть 80 -120 г белка, 80 -100 г жира, 400 - 600 г углеводов.
· Соотношение в пищевом рационе количества белков, жиров и углеводов должно быть 1:1,2:4.
· Пищевой рацион должен полностью удовлетворять потребность организма в витаминах, минеральных солях и воде, а также -одержать все незаменимые аминокислоты (полноценные белки).
· Не менее одной трети суточной нормы белков и жиров должно поступать в организм в виде продуктов животного происхождения.
· Необходимо учитывать правильное распределение калорийности рациона по отдельным приемам пищи. Первый завтрак должен содержать примерно 25-30% всего суточного рациона, з торой завтрак - 10-15%, обед 40 - 45% и ужин - 15-20%.
Тема « Регуляция углеводного обмена».
Глюкоза – основной представитель углеводов. Равномерно распределяется между плазмой крови и клетками с некоторым превышением ее в плазме.
В артериальной крови на 0,25 ммоль/л выше, чем в венозной крови (что объясняется непрерывным использованием глюкозы тканями).
В цельной крови глюкоза ниже чем в плазме => из-за объема Er.
При хранении крови концентрация глюкозы быстро понижается из-за процессов гликолиза, поэтому при определении уровня глюкозы в сыворотке или плазме нужно отделить сыворотку от сгустка, а в плазме от Еr не позже чем через 1 час (через каждый час глюкоза понижается на 7%) либо кровь необходимо стабилизировать фторидом Na.
В течение суток концентрация глюкозы колеблется в пределах 3,3-6,4 ммоль/л.
После приема пищи глюкоза увеличивается до 8,9-10 ммоль/л, а через 2-3 часа глюкоза возвращается к исходному уровню.
Ежедневно кровью переносится примерно 200 г глюкозы, из них 80% потребляется Еr и клетками мозга.
Реабсорбированная глюкоза откладывается в печени в виде гликогена. Гликоген может поддерживать N уровень глюкозы – 24ч. – 3 суток, затем организм перестраивается от гликогенолиза до глюконеогенеза.
Объектами регуляции углеводного обмена является 3 этапа:
Iэтап. Синтез и накопление гликогена в тканях (печень, мышцы).
Переход углеводов в жировые ткани – этап резервации углеводов.
II этап. Распад гликогена в печени и образование глюкозы из белков и жиров (связан с поступлением в кровоток глюкозы как энергетический материал).
III этап . Аэробный и анаэробный распад углеводов в тканях с освобождением энергии.
На всех этапах участвует НС, гормоны, ткани (печень, почки).
Нормогликемия – важнейшее условие для жизнедеятельности всех клеток организма.
Поддерживание НС состоянием печени и гормонами: инсулином, глюкагоном, адреналином и в меньшей степени норадреналином.
Печень – единственный орган депо глюкозы в виде гликогена для нужд всего организма.
Снижение глюкозы в крови ниже 2,75 ммоль/л – рефлекторное возбуждение высших метаболических центров гипоталамуса, куда поступают нервные импульсы из хеморецепторов клеток тканей и органов.
Из ЦНС по нервным путям возбуждение передается в симпатическую Н.С. в печень => активируется ф. фосфорилаза печени = > гликоген расщепляется до глюкозы и т. д.. В кровотоке увеличивается уровень глюкозы за счёт
«мобилизации гликогена».
Повышенная гипергликемия – рефлекторное возбуждение парасимпатической Н.С., по блуждающему нерву перед. В раnereas (b-островки Лангерганса – синтезируется инсулин) – способствует понижению концентрации глюкозы в крови.
Роль инсулина :
1. способствует усвоению глюкозы тканями за счет активации белков – переносчиков глюкозы через мембрану клеток;
2. активирует глюку – и гексокиназы => увеличивается гликолиз => превращают глюкозу в глюкозу – 6-Ф.;
3. активирует гликоген-синтетазу => синтез гликогена;
4. ингибирует Г-6-Ф => активируется фосфорилаза => тормозит распад гликогена;
5. тормоз процесса глюконеогенеза;
6. превращение 30% углеводов в жир.
Все остальные гормоны способствуют повышению уровня глюкозы в крови, т.е. является антагонистами инсулина.
Глюкагон – антагонисты инсулина
– гипергликемия вследствие активации гликогенолиза.
Выработка a-клетками остр. Лангерганса
Сост. углеводного обмена определяется соотношением a и b - клетками остр. Лангеранса.
АКТГ гипофиза стимулирует синтез гормона коры надпочечников (кортизола, кортизона) – способствует глюконеогенезу и повышает глюкозу в крови.
Адреналин (г. мозгового слоя надпочечников) – активирует фосфорилазу печени и мышц => распад гликогена в печени с образованием глюкозы и в мышцах – МК.
Тироксин повышает всасывание углеводов в кишечнике, тормозит активность гексокиназы гипергликемическиесостояния.
Глюкагон, кортикотропин, соматотропин, глюкокортикоиды, адреналин и тироксин называется контринсулярными гормонами.
В регуляции углеводного обмена участвуют печень и почки (т.н. тканевая регуляция)
Избыток глюкозы депонируется в печени
Избыток углеводов активиз.липогенеза
Избыток глюкозы в крови, глюкозурия (почечный порог глюкозы 8,0 – 9,0 ммоль/л).
ПАТОЛОГИЯ УГЛЕВОДНОГО ОБМЕНА.
Характеризуется гипер- или гипогликемией.
1 . малое потребление углеводов
2 . нарушение всасывания углеводов
При заболеваниях поджелудочной железы
Заболевания тонкого кишечника
3. нарушение синтеза и распада гликогена
4. нарушение межуточного обмена углеводов
От насыщения О 2 ткани
От активности ферментов расщепляющих глюкозу
От недостаточности количества витамина В 1, который принимает активное участие в окислении ПВК.
При накоплении ПВК в крови может развиться ацидоз (сдвиг рН крови в кислую сторону).
5. нарушение регуляции углеводного обмена.
Нарушение всасывания углеводов:
недостаточность сока раncreas a-амилазы=> р-во всасывания углеводов. Наблюдается при поражении ацинусов раncreas => диффузные панкреатиты, опухоли раncreas, муковисцидоз.
Наличие в кале непереваренных зерен крахмала – показатель нарушения усвоения полисахаридов!
Нарушение всасывания фруктозы, галактозы, глюкозы – при воспалительных процессах кишечника, отравлении ферментативными ядами.
Патология всасывания углеводов особенно часто наблюдается в детстве (из-за недостаточного сформированных и адаптированных ферментов эпителия кишечника).
Новорожденные получают 50-60 г лактозы – гидролиз этого дисахарида до глюкозы и галактозы осуществляется ферментом лактазой.
Дефицит лактазы – вздутие живота, диарея, гипотрофия.
Нарушение кишечного всасывания наблюдается при синдроме мальабсорбции (дефицит лактазы, мальтазы и т.д.) – может быть наследственной ферментопатией, а также вызываться дисфункцией желудка, печени раncreas, реакциях желудка, тонкой кишки.
Синдром мальабсорбции сочетает синдром диареи, белковой недостаточности, гиповитаминоза, понижении температуры тела.
Клиника мальабсорбции идентична с целиакией (поражение слизистой тонкого кишечника глиадином – компонентом глютена злаковых и бобовых культур) – проявляется с грудного возраста, когда в рацион включаются разные каши.
Диагностика непереносимости углеводов – используется определение их в моче, проводятся тесты на толерантность к углеводам.
Прочитайте:
|
Патология углеводного обмена может быть представлена совокупностью нарушений катаболических и анаболических превращений углеводов, поступающих с пищей в виде растительных и животных сахаров – глюкозы, сахарозы, крахмала, гликогена и др. Суточная потребность в них составляет 350-500 г, что определяется 124 г на каждые 1000 ккал рациона, или 50% суточной калорийности. Нарушения катаболизма углеводов могут возникать в результате расстройств
1) пищеварения, т.е. расщепления углеводов (например, мальабсорбция, мальдигестия),
2) всасывания углеводов в ротовой полости и других отделах желудочно-кишечного тракта,
3) межуточного обмена сахаров,
4) образования конечных продуктов превращения углеводов, т.е. воды и углекислого газа.
Нарушения анаболизма сахаров проявляется расстройством синтеза и депонирования гликогена, глюконеогенеза, перехода углеводов в жиры. Таким образом, нарушения углеводного обмена могут наблюдаться на всех этапах превращений сахаров:
1) поступления, 2) расщепления, 3) всасывания, 4) синтеза и ресинтеза, 5) межуточного обмена.
На заключительном этапе превращения моносахаров подобные нарушения сопрягаются с расстройствами гликолиза, тканевого дыхания и окислительного фосфорилирования, о чем говорится в разделе «гипоксия».
На этапе гидролиза полисахаридов нарушения углеводного обмена могут быть обусловлены:
1) заболеваниями слизистой оболочки различных отделов желудочно-кишечного тракта (ротовой полости, тонкой кишки);
2) заболеваниями секреторных органов, т.е. крупных и менее крупных пищеварительных желез:
А) слюнных желез (дефицит альфа-амилазы, мальтазы),
Б) желез слизистой тонкой кишки,
В) поджелудочной железы (дефицит лактазы, сахаразы, мальтазы, амилазы, инвертазы, а также оптимальное значение среды химуса),
Г) печени (формирование слабощелочной среды),
3) нарушениями нейрогуморальной регуляции образования и выделения секретов,
4) врожденными и приобретенными энзимопатиями,
5) голоданием,
6) общими поражениями организма:
А) лихорадка,
Б) перегревание,
В) обезвоживание.
На этапе всасывания моносахаров из желудочно-кишечного тракта патология углеводного обмена может быть связана с такими факторами, как:
1) нарушения нервной регуляции секреторного процесса, в результате чего идет неполное расщепление полисахаров,
2) нарушения эндокринно-гормональной регуляции (изменения секреции инсулина, глюкокортикоидов и других гормонов),
3) врожденных и приобретенных энзимопатий:
А) дефицит гексокиназы – фермента, который обеспечивает процесс фосфорилирования и образование глюкозо-6-фосфата;
Б) фосфорилазы и фосфатазы, которые обеспечивают дефосфорилирование глюкозо-6-фосфата;
В) отсутствие глюкозо-6-фосфатазы ведет к нарушению превращений молочной кислоты в пировиноградную.
Если инсулин активирует гексокиназу и тормозит глюкозо-6-фосфатазу, то глюкокортикоиды обладают противоположным действием. Глюкагон и адреналин активируют фосфорилазу печени и мышц (подробнее см. Ниже). Таким образом, нервные и гуморальные механизмы играют едва ли не самую существенную роль в регуляции углеводного обмена уже на этапах образования и всасывания моносахаров. Поэтому следует помнить о тех гормонах, которые принимают участие в регуляции углеводного обмена.
В зависимости от того, как они влияют на содержание глюкозы в крови, их классифицируют на две группы: 1) контринсулярные гормоны, повышающие содержание глюкозы 2) инсулин, снижающий уровень сахара. Инсулин усиливает проницаемость клеточных мембран, способствуя переходу глюкозы в клетки. Внутри клетки инсулин активирует все пути превращения глюкозы: гликолиз, тканевое дыхание, превращение в пентозофосфатном цикле, гликогенез, липогенез. Кроме того, как уже упоминалось, инсулин активирует гексокиназу и тормозит глюкозо-6-фосфатазу.
К контринсулярным гормонам относят:
1) адреналин, 2) глюкагон, 3) глюкокортикоиды, 4) соматотропный гормон (СТГ), 5) адренокортикотропный гормон (АКТГ), 6) тироксин.
Глюкагон, глюкокортикоиды, тироксин и адреналин активируют фосфорилазу и глюкозо-6-фосфатазу; СТГ и тироксин – инсулиназу; глюкокортикоиды тормозят активность гексокиназы, стимулируют глюконеогенез (образование глюкозы) из аминокислот и лактата; адреналин и глюкагон стимулируют гликогенолиз. Все отмеченные выше эффекты контринсулярных гормонов, в конечном счете, повышают содержание глюкозы в крови выше 6,66, реально выше 5,55 ммоль/л, вызывая гипергликемию.
После всасывания в кровь из желудочно-кишечного тракта или других источников глюкоза поступает в клетки через специфические рецепторы-переносчики, названные глютами. Сейчас известны 5 глютов, которые транспортирую глюкозу через цитоплазматическую мембрану по градиенту концентрации. Глюты-1 предназначены для поступления глюкозы через эндотелиоциты в мозг, глюты-2 – для поступления глюкозы в кровь из гепатоцитов, энтероцитов и нефроцитов. Глюты-3 обеспечивают транспорт глюкозы нейроны, глюты-4 являются главным транспортером глюкозы в клетки инсулин-зависимых тканей – миоциты, адипоциты, клетки соединительной ткани. Наиболее выражена реакция на инсулин у глют-4. Отметим, что остальные переносчики глюкозы (не глюты) работают по механизму активного транспорта, т.е. против концентрационного градиента.
Гипергликемия (выше 6,1 ммоль/л) является одним из типовых проявлений нарушения углеводного обмена. Чаще всего гипергликемия возникает в результате действия следующих факторов:
1) эндокринная-1 – дефицит инсулина,
2) эндокринная-2 – гиперпродукция всех или отдельных контринсулярных гормонов (например, при гипертиреозе, синдроме или болезни Иценко-Кушинга, акромегалии, глюкагономе, феохромоцитоме и т.п.),
3) алиментарная гипергликемия,
4) некоторые виды наркоза,
5) стрессорная (например, при эмоциональном напряжении),
6) судорожная форма при эпилептических приступах;
7) возбуждение вегетативных центров головного мозга (например, известный в литературе сахарный укол К. Бернара).
Другим характерным проявлением нарушения углеводного обмена является гипогликемия, т.е. снижение содержания сахара в крови ниже 4,44, реально ниже 3,8 ммоль/л. Гипогликемия встречается реже гипергликемии и наблюдается при действии следующих экзогенных и эндогенных факторов:
1) избыток инсулина – гиперинсулинизм, например, при инсуломе,
2) дефицит контринсулярных гормонов (например, болезни Аддисона),
3) потеря углеводов (гликозурия),
4) углеводное, жировое и белковое голодание,
5) усиленная утилизация углеводов,
6) некоторые типы энзимопатий;
7) гликогенозы и агликогенозы;
8) поражения печени;
9) у новорожденных, особенно при многоплодии;
10) аутоиммунные формы (аутоантитела к инсулиновым рецепторам).
Чаще всего гипергликемия встречается как симптом сахарного диабета.
Сахарный диабет (diabetes mellitus) – это заболевание, которое обусловлено абсолютным или относительным дефицитом инсулина и характеризуется нарушением вследствие этого всех видов обмена, и, в первую очередь, обмена углеводов. Сахарный диабет встречается у 4% людей, (в России 1-2%), а у аборигенов ряда стран до 20% и выше (например, в Финляндии – до 29%, а у американских индейцев пима – до 39%). В настоящее время в мире насчитывается около 200 млн. людей, больных сахарным диабетом, продолжительность жизни которых укорачивается на треть. По данным статистики, каждый пятый представитель среди пожилых болен сахарным диабетом. Сахарный диабет – третья по частоте причина смерти, ведущая причина слепоты, половина больных сахарным диабетом умирает от хронической почечной недостаточности, 75% – от осложнений атеросклероза. Они в 2 раза чаще страдают болезнями сердца и в 17 раз – нефропатиями.
Первое упоминание о болезни, напоминающей сахарный диабет, относится к четвертому тысячелетию до нашей эры (3200 лет). Термин «диабет» введен в литературу Аретием Каппадокийским (около 2000 лет нашей эры). В XI веке Авиценна подробно описал симптомы «сахарной болезни», а в 1679 году Томас Уиллисон назвал ее «сахарным диабетом». Спустя три года Дж. Бруннер показал, что частичное удаление поджелудочной железы у собак вызывает у них полидипсию. Экспериментальный сахарный диабет был воспроизведен Д. Мерингом и О. Минковским в 1849 г. В 1869 г. П. Лангерганс впервые описал морфологический субстрат эндокринной функции pancreas, который был представлен скоплениями, в первую очередь, a- (А-), b- (В-) клетками, а также другими клетками, в частности D-клетками. Комплекс всех выше перечисленных клеток, включая сосудистую и нервную системы, получил впоследствии наименование островков Лангерганса. В поджелудочной железе человека таких островков насчитывается около 1 млн. с общей массой 1-2 г. Они локализованы главным образом в теле и хвосте железы. В 1911 г. Скотт, затем Ф. Бантинг и Ч. Бест (1921 г.) установили, что вытяжка из поджелудочной железы купирует симптомы сахарного диабета. В 1909 г. Миннер назвал активное вещество в экстракте pancreas инсулином. В 1926 г. Абель с соавторами выделили инсулин в химически чистом виде. Ф. Санжер (1956 г.) раскрыл его химическую структуру и в 1963 году совместно с Котсойяннисом и Цаном синтезировал искусственным путем. В настоящее время инсулин в промышленных количествах получают методом генной инженерии.
Основную массу островков Лангерганса – 70-80% составляют В- или b-клетки, которые и вырабатывают инсулин. Кроме них, в островковом аппарате имеются А- или a-клетки (20-25%), синтезирующие глюкагон, а также D-клетки (продуцируют соматостатин).
Инсулин представляет собой белок, состоящий из двух полипептидных цепей, включающих 51 аминокислоту (А-цепочка состоит из 21, В-цепочка – из 30 аминокислотных остатков), с молекулярной массой, близкой к 6000 D. Синтез инсулина протекает в рибосомах. В физиологических условиях в поджелудочной железе имеется запас инсулина в количестве, близком к 25 мг, а суточная потребность в нем составляет 2,5-5 мг. В плазме крови инсулин связывается с транспортным соединительнотканным фрагментом белком – С-пептидом. Содержание инсулина в плазме оценивается 400-800 нанограмм на литр (нг/л), а С-пептида – в 0,9-3,5 нг/л. Инсулин разрушается инсулиназой или другими протеолитическими ферментами лизосом в печени (40-60%) и почках (15-20%).
В организме инсулин оказывает влияние на основные виды обмена – углеводный, белковый, жировой и водно-электролитный.
I. В отношении углеводного обмена наблюдаются следующие эффекты инсулина
1. Активация фермента гексокиназы (глюкокиназа ) , запуская ключевую биохимическую реакцию аэробного и анаэробного расщепления углеводов – фосфорилирование глюкозы;
2. Активирует фосфофруктокиназу , обеспечивая фосфорилирование фруктозо-6-фосфата. Эта реакция, как известно, играет важную роль в процессах гликолиза и глюконеогенеза.
3. Активирует гликогенсинтетазу , стимулируя синтез гликогена из глюкозы в реакциях гликогенеза.
4. Тормозит активность фосфоэнолпируваткарбоксикиназу , угнетая ключевую реакцию глюконеогенеза, т.е. Превращение пирувата в фосфоэнолпируват.
5. Активирует синтез уксусной кислоты из лимонной в цикле Кребса.
6. Облегчает транспорт глюкозы (и других веществ) через цитоплазматические мембраны, особенно в инсулин зависимых тканях – жировой, мышечной, печеночной.
II. Роль инсулина в регуляции жирового обмена. 1. Активирует фосфодиэстеразу , усиливая распад цАМФ, что вызывает торможение липолиза в жировой ткани.
2. Стимулирует синтез из жирных кислот ацил-коэнзима-А , ускоряя утилизацию клетками кетоновых тел.
III. Роль инсулина в регуляции белкового обмена : 1. Усиливает поглощение аминокислот .
2. Стимулирует синтез белка клетками.
3. Тормозит распад белка.
4. Подавляет окисление аминокислот .
IV. Участие инсулина в регуляции водно-электролитного обмена:
1. Усиливает поглощение мышцами и печенью калия.
2. Снижает экскрецию натрия мочой.
3. Способствует задержке воды в организме.
Не вдеваясь в подробности, отметим, что в настоящее время известны, по крайней мере, 4 механизма реализации внутриклеточных эффектов инсулина:
1. Активация или торможение клеточных ферментов.
2. Активация транспорта глюкозы и аминокислот в клетки.
3. Влияние на синтез РНК и белков.
4. Ингибирование клеточной аденилатциклазы и понижение содержания внутриклеточного цАМФ.
Сам по себе механизм действия инсулина выглядит следующим образом. Инсулин связывается с рецепторами на поверхности клеток-мишеней, в первую очередь, инсулин зависимых тканей – печени, мышц, жира, соединительной ткани. На цитоплазматических мембранах вышеперечисленных тканей, как оказалось, таких рецепторов очень много – на каждой клетке от 5000 до 250000, хотя реально функционирует лишь около 10%. После подобного взаимодействия изменяются характеристики цитоплазматических мембран, и облегчается транспорт глюкозы и аминокислот. Одновременно происходит ингибирование аденилатциклазы плазматической мембраны, снижается содержание цАМФ, в результате чего запускается каскад анаболических реакций клетки: гликогенез, синтез белков, жиров и нуклеиновых кислот.
Секреция инсулина стимулируется следующими веществами:
1) глюкоза, 2) аминокислоты, особенно аргинин и лизин, 3) бомбезин, 4) гастрин, 5) панкреазимин, 6) секретин, 7) глюкокортикоиды, 8) глюкагон, 9) адренокортикотропный гормон, 10) соматотропный гормон, 11) b-адреностимуляторы.
Тормозят выработку инсулина (1) гипогликемия, (2) соматостатин, (3) никотиновая кислота, (4) a-адреностимуляторы
Второй гормон поджелудочной железы – глюкагон представляет собой одноцепочечный полипептид, состоящий из 29 аминокислотных остатков с молекулярной массой около 3500 D. В чистом виде глюкагон был выделен в 1951 году Геде. Его содержание в крови здоровых людей натощак близко к 75-150 нг/л (активны лишь 40% гормона). На протяжении суток он непрерывно синтезируется a-клетками островков Лангерганса. Секреция глюкагона тормозится глюкозой и соматостатином. Как указывалось, глюкагон стимулирует липолиз, кетогенез, гликогенолиз, глюконеогенез, что ведет к повышению содержания глюкозы в крови. Существенное значение в регуляции гликемии имеет его стимулирующее действие на секрецию инсулина – косвенная стимуляция через гипергликемию и быстрая прямая стимуляция. Гормон разрушается в почках.
Механизм действия глюкагона сводится к активации через специфические рецепторы цитоплазматических мембран аденилатциклазы главным образом печени и последующего повышения содержания цАМФ в клетках. Это и приводит к гипергликемии, липолизу, кетогенезу и некоторым другим эффектам.
Основными проявлениями сахарного диабета являются следующие:
1) гипергликемия (уровень глюкозы в крови выше 6,66 ммоль/л),
2) глюкозурия (содержание глюкозы в моче может достигать 555-666 ммоль/л, за сутки в первичную мочу здоровых людей фильтруется до 150 г глюкозы, больных сахарным диабетом - около 300-600 г, а возможная потеря глюкозы мочой достигает 300 г/сутки),
3) полиурия (суточный диурез выше 2 л, но может достигать и 12 л),
4) полидипсия – жажда (прием жидкости более 2 л в сутки),
5) гиперлактацидемия (содержание лактата в крови более 0,8 ммоль/л, чаще 1,1-1,4 ммоль/л),
6) гиперкетонемия – повышенное содержание в крови кетоновых тел (чаще выше 520 мкмоль/л), кетонурия,
7) липемия (повышенное содержание в крови липидов, чаще выше 8 г/л),
8) быстрое похудание, свойственное больным с инсулин-зависимым сахарным диабетом.
9) понижение толерантности организма к глюкозе, определяемой с помощью нагрузочной пробы глюкозой (75 г глюкозы и стакан воды, далее наличие двукратного превышения содержания глюкозы около 11,1 ммоль/л на протяжении 60-ой, 90-ой и 120-ой минутах определения).
Этиология сахарного диабета. Причиной сахарного диабета является инсулиновая недостаточность. Инсулиновая недостаточность может быть панкреатической, т.е. обусловлена нарушением биосинтеза и выделения инсулина из В-клеток островков Лангерганса поджелудочной железы – так называемый инсулинзависимый сахарный диабет (ИЗСД), и внепанкреатической, которая может иметь место при нормальном выделении инсулина В-клетками – инсулиннезависимый сахарный диабет (ИНСД). Наиболее вероятной причиной ИЗСД считается генетическая предрасположенность, которая определяется, как минимум, двумя генами в шестой хромосоме. Однако, как стало сейчас известно, около 20 хромосомных участков, проявляющих признаки положительной сцепленности с заболеванием, имеют значение в развитии сахарного диабета. Их связывают с генами 2, 6, 10, 11, 14, 15, и 18 хромосом.
Генетическая предрасположенность к ИЗСД ассоциируется с определенными антигенами лейкоцитов (система HLA). Так, распространенность антигена B 8 и B 15 среди больных ИЗСД составляет 49 и 21%, среди здоровых – 31 и 10%, соответственно. Поэтому наличие у людей гаплоидов B 8 или B 15 увеличивает риск заболеть ИЗСД в 2-3 раза, а их сочетание, т.е. В 8 + B 15 – на один порядок (так называемые маркеры сахарного диабета). Однако среди системы HLA есть антигены, которые оказывают противоположное действие, препятствуя возникновению ИЗСД. Так, гаплотип В 7 обнаружен среди 13% больных, а среди здоровых – в 27% случаев. Относительный риск заболеть ИЗСД у носителей В 7 в 14,5 раза ниже, чем лиц, у которых он отсутствует. Лейкоцитарные антигены гистосовместимости определяют иммунологический характер ответа организма на различные антигены и непосредственного отношения к углеводному обмену не имеют. Таким образом, HLA-фенотип при ИЗСД является генетической детерминантой, определяющей чувствительность В-клеток поджелудочной железы к вирусным и другим антигенам и отражает характер иммунологического ответа организма.
Помимо наследственной предрасположенности этиологическими факторами сахарного диабета являются поражения самой поджелудочной железы. Известно, что большая часть из общего количества островков Лангерганса (а их чуть больше 1 млн.) приходится на хвостовую часть и тело железы. Поэтому травмы, нарушения кровообращения, инфекции и интоксикации именно этой части поджелудочной железы приводят к развитию сахарного диабета.
Согласно современным представлениям, наиважнейшим диабетогенным фактором риска является аутоиммунный процесс. В результате иммунологических реакций образуются антитела (иммуноглобулины) и сенсибилизированные Т-лимфоциты против b-клеток островкового аппарата и инсулина, что подтверждается наличием в островках особых морфологически выраженных проявлений очагов воспаления, получивших наименование инсулитов. Повреждающим эффектом обладают моноциты, макрофаги, Т-цитотоксические лимфоциты, NK-клетки, антитела (главным образом Ig G-класса), а также цитокины – инерлейкин-1, фактор некроза опухоли-a, g-интерферон. В 80-100% случаев у больных сахарным диабетом находят проявления гиперчувствительности немедленного и/или замедленного типов.
В качестве этиологического фактора ИЗСД могут выступать вирусные инфекции, поражающие В-клетки островков. Особое значение придается вирусам кори, краснухи, эпидемического паротита, ветряной оспы, не Коксаки, инфекционного мононуклеоза, гепатита, цитомегаловируса, реовирусы, энтеровирусы, вирус Эпштейна-Барр. Инсулиты обнаруживаются не только при аутоаллергических заболеваниях, но и при вирусных инфекциях, которые инициируют образование в организме больных сахарным диабетом неоантигенов (вторичных аутоантигенов). Высвобождающиеся в процессе аллергических реакций из макрофагов и лимфоцитах интерлейкин-1, фактор некроза опухоли-a, g-интерферон и другие медиаторы аллергии обладают по отношению к b-клеткам цитотоксическим, антипролиферативным и антисекреторным действиями. В результате длительного деструктивного процесса к моменту развернутой клинической картины сахарного диабета 85-95% всех b-клеток уже разрушены, что приводит к абсолютной инсулиновой недостаточности.
Альтернативным фактором риска сахарного диабета может быть действие токсических для В-клеток веществ, так называемых химических диабетогенов. Так, экспериментальный сахарный диабет можно вызвать введением в организм аллоксана (аллоксановый диабет), дитизона, стрептозотоцина, нитрозаминов, нитрозомочевины. Химическими диабетогенами являются мочевая кислота, лекарственный препарат пентамидин, средство для борьбы с грызунами вакор, продукты, содержащие пищевые цианиды (африканский корнеплод кассава, которым питается около 400 млн. аборигенов). В последнее время внимание исследователей привлекают химические диабетогенные потенции белка коровьего молока – бычьего сывороточного альбумина. В эксперименте использовалось также удаление большей части поджелудочной железы (Меринг и Минковский), выключение В-клеток с помощью антител к ним или инсулину, избыточное введение контринсулярных гормонов.
К факторам риска следует отнести и чрезмерное употребление в пищу углеводов и жиров, что может со временем привести к перенапряжению и истощению функций В-клеток островков Лангерганса, а также психические травмы (например, сахарный диабет «биржевиков»). Отмечена зависимость сахарного диабета от массы тела новорожденного – чем выше вес младенца, тем чаще в постнатальном периоде развивается сахарный диабет. Вскармливание грудных детей не кипяченым коровьим молоком, содержащим сывороточный бычий альбумин (фактор СБА) также ведет к сахарному диабету. Тем не менее, многие из вышеперечисленных факторов действуют на фоне наследственной предрасположенности, связь которой весьма высока (до 50% для ИЗСД и до 100% ИНСД).
Патогенез сахарного диабета. Поскольку существует два типа сахарного диабета – ИЗСД и ИНСД следует рассматривать патогенез для каждого из них отдельно. ИНСД – это семейное заболевание, где фактором риска, влияющим на формирование заболевания, является ожирение , но в отличие от ИЗСД здесь нет генетических маркеров. Патогенез ИНСД связывают с тремя механизмами, выявляющимися в той или иной степени у каждого больного:
1) недостаточная секреция инсулина для утилизации глюкозы, особенно в течение первого часа после ее поступления из-за снижения чувствительности глюкорецепторов В-клеток островков к глюкозо-стимулу;
2) инсулинорезистентность вследствие аномалий молекулы инсулина, связывания инсулина циркулирующими в крови антителами к нему, наличием антител к инсулиновым рецепторам в клетках, уменьшением их числа и т.п.;
3) усиленным образованием глюкозы печенью на протяжении полных суток, тогда как в норме синтез глюкозы происходит только днем.
Патогенез ИЗСД, так или иначе, связан с деструкцией и снижением числа активных β-клеток, резким уменьшением количества вырабатываемого инсулина, что приводит к абсолютному его дефициту. Хорошо известно, что по мере развития болезни до клинически выраженных форм диабета масса поджелудочной железы может уменьшиться в два раза, вес островков – в 3,3 раза, а количество В-клеток – в 850 (!) раз. В результате дефицита инсулина нарушаются углеводный, жировой, белковый, водно-минеральный обмен, а также кислотно-щелочное равновесие.
Нарушение углеводного обмена при сахарном диабете связано, в первую очередь, с угнетением активности фермента гексокиназы в инсулинзависимых тканях – печени, мышцах, жировой и соединительной ткани, а также нарушением проницаемости клеточных мембран. Дефицит глюкозо-6-фосфата в печени компенсируется образованием его в процессе глюконеогенеза, а повышение активности фосфорилазы и глюкозо-6-фосфатазы печени способствует усиленному образованию глюкозы и тормозит синтез гликогена. В свою очередь, из-за повышенного уровня в крови контринсулярных гормонов, в частности глюкокортикоидов, активируются глюконеогенез и гликогенолиз, что ведет к гипергликемии. Таким образом, связанная с дефицитом инсулина гипергликемия обусловлена несколькими факторами:
1) затруднением перехода глюкозы из плазмы в клетку через транспортеры – глюты, особенно глют-4, локализованные в цитоплазматических мембранах и дальнейшая ее утилизация (особенно инсулин зависимыми тканями – мышцами, жировой тканью, где преимущественно находятся эти траспортеры);
2) сниженной активностью гексокиназы клеток и ограничением вследствие этого превращения глюкозы по всем известным метаболическим путям;
3) активацией процессов распада гликогена (гликогенолиз);
4) образованием глюкозы из аминокислот, глицерина и жирных кислот и продуктов распада углеводов – лактата и пирувата (глюконеогенез);
5) торможением образования гликогена из глюкозы (гликогенез);
6) усиленной продукцией глюкозы печенью (так, у здорового человека ночью глюкоза печенью не вырабатывается, а у больных синтез глюкозы идет в течение суток постоянно, причем ночью он усилен, особенно ближе к утренним часам);
7) ослабленным липогенезом и усиленным липолизом с последующим превращением жиров в сахара;
8) угнетением пентозофосфатного пути превращения глюкозы и образования НАДФ + .
К тому же усиливается превращение глюкозы по альтернативным инсулин независимым путям, например, сорбитоловому, в результате чего в организме накапливаются соответствующие продукты распада глюкозы: сорбитол и фруктоза, которые вследствие избыточного образования могут откладываться в таких тканях, как хрусталик, эндотелий сосудов, нервной системе.
Нарушения перехода и последующего превращения глюкозы в тканях приводит не только к гипергликемии, но и гиперлактацидемии – повышенному содержанию молочной кислоты в крови (норма 1,1-1,2 ммоль/л). Образовавшаяся вследствие нарушения аэробного окисления глюкозы молочная кислота, особенно в больших количествах, поступает в кровь из работающих мышц, селезенки, почек и легких и не успевает ресинтезироваться в гликоген печенью.
Инсулиновая недостаточность, гипергликемия и последующее изменение активности ферментов в почках (угнетение активности гексокиназы, повышение активности фосфатазы) нарушают нормальные процессы обратного всасывания глюкозы из первичной мочи, концентрация которой прогрессивно увеличивается по мере нарастания гипергликемии. Гипергликемия сопровождается повышением осмотического давления крови и переходом жидкости в кровь из тканей, что ведет к дегидратации последних. В результате обезвоживания тканей, гиперосмолярности крови возникает жажда – полидипсия. Определенный вклад в развитие полидипсии вносит полиурия.
Сам по себе патогенез полиурии связан, во-первых, с глюкозурией (содержащаяся в конечной моче глюкоза удерживает около себя воду), во-вторых, с дополнительным выведением с мочой электролитов (Na + и K + , так называемый осмотический диурез), аминокислот и кетоновых тел. Кроме того, важным звеном патогенеза полиурии является полидипсия.
Нарушение жирового обмена . Чаще всего нарушение жирового обмена происходит вторично вследствие первичного расстройства углеводного обмена. Проявлениями нарушения жирового обмена являются:
1) гиперлипемия (содержание липидов в плазме выше 8 г/л, норма 4-8);
2) гиперкетонемия (содержание кетоновых тел в плазме выше 30 мг/л);
3) гиперхолестеринемия (более 7,5 ммоль/л, норма 4,2-7,5);
4) гиперфосфолипидемия (более 3,5 ммоль/л, норма 2,0-3,5);
5) повышение содержания неэстерифицированных жирных кислот (более 0,8 ммоль/л);
6) увеличение содержания триглицеридов – триглицеридемия (более 1,9 ммоль/л, норма 0,1-1,9);
7) увеличение содержания липопротеидов (более 8,6 г/л, норма 3,8-8,6).
Перечисленные показатели измененного жирового обмена при сахарном диабете обусловлены не только дефицитом инсулина, но и избытком контринсулярных гормонов, а также отсутствием липокаина. Гиперлипемия в отсутствии липокаина может приводить к жировой инфильтрации печени, чему способствуют
1) обеднение печени гликогеном;
2) дефицит липотропных факторов, включая липокаин;
3) жировая диета;
4) избыток СТГ;
5) инфекции и интоксикации.
Эти же факторы приводят к кетозу, однако, непосредственными причинами кетоза являются следующие:
1) усиленный распад неэстерифицированных жирных кислот в печени;
2) нарушение ресинтеза ацетоуксусной кислоты в высшие жирные кислоты;
3) недостаточное окисление ацетоуксусной кислоты в цикле Кребса;
4) повышенное образование ацетоуксусной кислоты в печени.
Вышеописанные изменения жирового обмена ведут к ускорению развития атеросклероза.
Нарушение белкового обмена . Эти нарушения касаются усиленного распада протеидов и ослабления синтеза белка. Торможение синтеза белка является предпосылкой образования из их компонентов углеводов – глюконеогенез, который стимулируется под влиянием глюкокортикоидов и АКТГ. Нарушается белковый состав плазмы:
1) снижается содержание альбуминов,
2) растет концентрация глобулинов,
3) повышается уровень альфа-2-гликопротеидов.
Усиление глюконеогенеза сопровождается повышенным образованием свободных аминокислот, аммиака, мочевины и других продуктов распада белка, что ведет к гиперазотемии и гиперазотурии. Гипергликемия вызывает гликозилирование различных белков (например, альбумина, гемоглобина, белков базальной мембраны сосудов и т.д.), повышение иммуногенности, что играет важную роль в патогенезе микроангиопатий. Так, в крови здоровых людей содержится несколько разновидностей гемоглобина А (Hb 1A , Hb 1B , Hb 1C), которые на конце b-цепи содержат глюкозу или глюкозо-6-фосфат. В норме содержание таких гликозилированных гемоглобинов колеблется в пределах 4-6%, а у больных сахарным диабетом – 10-15%.
Концентрация гликозилированных гемоглобинов соответствует не уровню глюкозы в крови в момент взятия пробы, а его усредненному значению за предшествующий 4-6 недельный период. Нарушение белкового обмена сопровождается снижением продукции защитных белков, что объясняет склонность больных сахарным диабетом к привходящей инфекции. Наиболее частыми осложнениями сахарного диабета являются:
1) трофические кожные расстройства;
2) интеркуррентные инфекции;
3) сосудистые расстройства – атеросклероз, инфаркты миокарда, инсульты и другие,
4) диабетические ретинопатия,
5) нефропатия,
6) нейропатия.
Наиболее грозным осложнением сахарного диабета, представляющим угрозу жизни, является кома. Для сахарного диабета характерны три типа комы:
1) кетоацидотическая,
2) гиперлактацидемическая,
3) гиперосмолярная.
Для купирования коматозного состояния используют введение инсулина, передозировка которого может вызвать гипогликемическое состояние с последующим переходом в гипогликемическую кому. В патогенезе кетоацидотической комы имеют значение следующие факторы:
1) дефицит инсулина,
2) гиперпродукция контринсулярных гормонов, особенно глюкагона,
3) прогрессирующая гипергликемия (из-за глюконеогенеза, гликогенолиза, нарушения утилизации глюкозы),
4) гиперосмолярность крови (что вызывает переход жидкости из тканей в кровь и формирует дегидратацию тканей),
5) полиурия с высокой осмолярностью мочи (что ведет к потере жидкости, электролитов, гиповолемии с последующим снижением артериального давления),
6) прогрессирующее нарушение жирового обмена (гиперлипидемия, кетоз),
1) отравления организма и ЦНС кетоновыми телами,
2) обезвоживания,
3) метаболического ацидоза.
В патогенезе гиперосмолярной комы, которая встречается в 10 раз реже кетоацидотической, имеют значения следующие факторы:
1) дефицит инсулина,
2) резко выраженная гипергликемия (до 55,5-111 ммоль/л),
3) гиперосмолярность крови (за счет гипергликемии и гипернатриемии),
4) дегидратация тканей,
5) отсутствие кетоацидоза,
6) гиповолемия,
7) осмотический диурез и прогрессирующая потеря электролитов.
В патогенезе гиперлактацидемической комы имеют значение следующие факторы:
1) дефицит инсулина,
2) гиперпродукция контринсулярных гормонов (СТГ, глюкагона и других),
3) накопление пировиноградной кислоты и переход ее в молочную – гиперлактацидемия,
4) невысокая гипергликемия,
5) метаболический ацидоз за счет гиперлактацидемии,
6) отсутствие гиперкетонемии и кетонурии.
Гипогликемическая кома. В патогенезе гипогликемической комы имеет значение предшествующее гипогликемическое состояние (содержание глюкозы в крови ниже 4,44 ммоль/л) с характерной симптоматикой. Важное значение приобретает передозировка инсулина, ведущая к гипогликемии (ниже 2,22 ммоль/л); гипогликемия приводит к нарушению энергетического обмена мозга и, в первую очередь, нейронов коры больших полушарий. В дальнейшем появляются функциональные нарушения ЦНС, а также развиваются компенсаторные реакции в виде активации симпатоадреналовой системы, выброса АКТГ и других контринсулярных гормонов, развития судорог и других. Немаловажное значение в патогенезе приобретают падение осмотического давления крови, а также спазм сосудов головного мозга.
| |Субстратная регуляция. Основным фактором, определяющим метаболизм глюкозы, является уровень гликемии. Пограничная концентрация глюкозы, при которой продукция ее в печени равна потреблению периферическими тканями, составляет 5,5-5,8 ммоль/л. При уровне меньше указанного печень поставляет глюкозу в кровь; при большем уровне, напротив, доминирует синтез гликогена в печени и мышцах.
Нервная регуляция. Симпатическая импульсация приводит к освобождению адреналина из надпочечников, который стимули-
рует гликогенолиз, и развивается гипергликемия. Раздражение парасимпатических нервных волокон сопровождается усилением выделения инсулина поджелудочной железой, поступлением глюкозы в клетку и гипогликемическим эффектом.
Почечная регуляция. Нормальная работа почек поддерживает уровень глюкозы с помощью процессов фильтрации и реабсорбции (см. раздел 12.4.4).
Гормональная регуляция. На уровень глюкозы в крови влияет широкий спектр гормонов, при этом только инсулин вызывает гипогликемический эффект. Контринсулярным действием с повышением уровня глюкозы крови обладают следующие гормоны: глюкагон, адреналин, глюкокортикоиды, аденокортикотропный (АКТГ), соматотротгый (СТГ), тареотропный (ТТГ), тареоидные. Эффекты инсулина и контринсулярных гормонов в норме регулируют стабильный уровень глюкозы в крови. При низкой концентрации инсулина, в частности при голодании, усиливаются гипергликемические эффекты других гормонов, таких, как глюкагон, адреналин, глюкокортикоиды и гормон роста. Это происходит даже в том случае, если концентрация этих гормонов в крови не увеличивается.
В табл. 12-2 приведена характеристика действия гормонов на метаболизм глюкозы.
Таблица 12-2. Гормоны, контролирующие гомеостаз глюкозы
Окончание табл. 12-2
Адреналин | Мозговое вещество надпочечников | Увеличивает: гликогенолиз (печень, мышцы); липолиз (жировая ткань) |
СТГ (гормон роста) | Эозинофильные клетки аденогипофиза | Увеличивает: гликогенолиз (печень); липолиз (жировая ткань) |
АКТГ | Базофильные клетки аденогипофиза | Стимулируетосвобождение глюкокортикоидов (надпочечники) Увеличиваетлиполиз (жировая ткань) |
Глюкокортикоиды | Пучковая зона коркового вещества надпочечников | Увеличивает:глюконеогенез, синтез гликогена (печень); протеолиз (мышцы) Снижаетпотребление глюкозы клетками (мышцы, жировая ткань) |
Гормоны щитовидной железы | Тироциты | Увеличивает:утилизацию глюкозы клетками, липолиз, протеолиз (опосредовано через усиление основного обмена) - все ткани Активируетинсулиназу (печень) |
В физиологических условиях в регуляции обмена глюкозы наиболее важны два гормона - инсулин и глюкагон.
Инсулин - видоспецифичный пептидный гормон (представляет собой полипептид, состоящий из двух аминокислотных цепей (А- и В-цепи), соединенных между собой двумя дисульфидными мостиками). Инсулин синтезируется в виде неактивной полипептидной цепи проинсулина, таким он сохраняется в гранулах β-клеток островков Лангерганса поджелудочной железы. Активация проинсулина заключается в частичном протеолизе пептида по Arg31 и Arg63 (рис. 12-18). В результате в эквимолярном количестве образуются инсулин и С-пептид, уровень которого в крови позволяет достаточно точно определить функциональное состояние β-клеток и является важным критерием в диагностике диабета. В сыворотке здоровых людей обнаруживается также небольшое количество проинсулина, его содержание значительно повышается у лиц с аденомой панкреатических β-клеток.
Рис. 12-18. Образование инсулина в поджелудочной железе. В результате частичного протеолиза проинсулина формируются инсулин и С-пептид. Инсулин состоит из двух полипептидных цепей, соединенных дисульфидными мостиками
Характеризуя секрецию инсулина, выделяют базальную секрецию (утром, после ночного голодания), фазу 1 - ранний пик секреции инсулина (у человека выявляется в ходе внутривенного глюкозотолерантного теста (ГТТ) в первые 10 мин после поступления глюкозы в кровь), фазу 2 (глюкозо-стимулированная секреция) - постепенное повышение секреции инсулина (30-120 мин).
Известны 3 механизма регуляции секреции инсулина β-клеткой, включающие несколько сигнальных путей (рис. 12-19). Секреция инсулина стимулируется, помимо указанных на рис. 12-19 факторов, окситоцином, пролактином, эстрогенами, кортизолом, СТГ (в высоких концентрациях), вазопрессином, опиоидными пептидами, свободными жирными кислотами. Катехоламины и нейропептид Y, а также соматостатин и простагландины подавляют секрецию инсулина. Инсулин способен оказывать аутокринное ингибиторное влияние на свою секрецию через собственные рецепторы на
Рис. 12-19. Механизмы стимуляции секреции инсулина β-клеткой: I - стимуляция М 1 -холинорецепторов (ХР) и В-рецепторов для холецистокинина (ХЦК) вызывает G-белокопосредованную активацию фосфолипазы С, расщепляющей мембранные фосфолипиды на два вторичных посредника - инозитолтрифосфат (ИФ 3) и диацилглицерол (ДАГ); Iа - ДАГ активирует протеинкиназу C, которая фосфорилирует белки цитозоля и вызывает экзоцитоз секреторных гранул без повышения уровня внутриклеточного Са 2 +; I6 - ИФ 3 открывает Са 2 +-каналы в эндоплазматической сети и митохондриях (МХ) и увеличивает концентрацию внутриклеточного Са 2 +, что приводит к экзоцитозу секреторных гранул; II - активация секреции инсулина моносахаридами и аминокислотами Са 2 +-зависимый процесс; активация транспорта Са 2 + происходит через усиление метаболизма этих субстратов в МХ и открытие Са 2 +-канала L-типа с последующей активацией Са 2 +-кальмодулинзависимой протеинкиназы II, что приводит к экзоцитозу секреторных гранул; III - стимуляция β-адренорецепторов активирует аденилатциклазу и повышает в цитозоле уровень цАМФ, который активирует протеинкиназу А, вызывающую фосфорилирование белков цитоскелета секреторных гранул и экзоцитоз. Примечание: ГПП-1 - глюкагоноподобный пептид 1; ГИП - гастринингибирующий пептид
β-клетках. Особое значение для регуляции секреции инсулина придается лептину, повышение выработки которого адипоцитами ингибирует секрецию инсулина, а также экспрессию генов рецептора инсулина, субстрата инсулинового рецептора и ГЛЮТ 4 (см. раздел 12.5).
Нарушения секреции инсулина могут являться результатом:
Недостаточного питания плода, что приводит к нарушению внутриутробного развития поджелудочной железы;
Недостаточного питания в постнатальном периоде;
Действия глюкозотоксичности (при хронической гипергликемии);
Генетических дефектов в механизмах секреции инсулина (мутации генов инсулина, глюкокиназы, ГЛЮТ 2 и др.).
Нарушения секреции инсулина могут выражаться ее снижением в ответ на глюкозу и другие стимуляторы (аргинин, лейцин); нарушением пульсирующей секреции инсулина и превращения проинсулина в инсулин, что приводит к повышению содержания проинсулина в крови.
Процессы синтеза и секреции инсулина не являются строго сопряженными процессами. Основными стимуляторами синтеза инсулина являются глюкоза, манноза, аргинин и лейцин. Известны 2 пути регуляции глюкозой синтеза инсулина β-клеткой (рис. 12-20). Путь I, связанный с активацией трансляции уже существующей в цитозоле матричной РНК (мРНК) проинсулина, - быстрый, не требующий усиления транскрипции генов; поэтому за счет него осуществляется синтез инсулина в ответ на стимуляцию глюкозой, которая приходится на начало абсорбтивного периода. Глюкокортикоиды укорачивают время жизни проинсулиновой мРНК и таким образом могут снижать продукцию инсулина в β-клетках. Параллельно активируется путь II синтеза инсулина, обеспечивающий достаточное количество гормона в конце абсорбтивного периода (см. рис. 12-20).
Инсулин в крови находится в свободном и связанном с белками состоянии. Деградация инсулина происходит в печени (до 80%), почках и жировой ткани. С-пептид также подвергается деградации в печени, но значительно медленнее. Концентрация инсулина натощак составляет у здоровых лиц 36-180 пмоль/л. После пероральной нагрузки глюкозой уровень его через 1 ч повышается в 5-10 раз по сравнению с исходным.
Рис. 12-20. Пути регуляции глюкозой синтеза инсулина β-клеткой: I - путь, связанный с активацией гена препроинсулина и транскрипцией м-РНК в ядре клетке; II - путь, связанный с активацией цитозольной м-РНК препроинсулина на рибосомах эндоплазматической сети; STAT 5 - активирующие транскрипционные факторы
Инсулин - главный анаболический гормон, обладающий широким спектром действия на транспорт и обмен углеводов, аминокислот, ионов, липидов, а также на процессы репликации и транскрипции, клеточной дифференцировки, пролиферации и трансформации. Высокие концентрации инсулина в крови обладают анаболическим, а низкие - катаболическим действием на обмен веществ.
Метаболические эффекты инсулина:
1) увеличивают активность и количество ключевых ферментов гликолиза;
2) активируют фермент гексокиназу, фосфорилирующую глюкозу во всех тканях организма;
3) увеличивают проницаемость клеточных мембран в мышцах и жировой ткани для глюкозы, ионов калия, натрия, аминокислот; для кетоновых тел в мышцах;
4) активируют гликогенсинтазу, вызывая усиление гликогеногенеза в печени;
5) снижают гликогенолиз, подавляя активность гликогенфосфатазы и гликогенфосфорилазы;
6) уменьшают активность ферментов глюконеогенеза;
7) снижая процессы глюконеогенеза, опосредованно активируют синтез белка;
8) увеличивают липогенез, усиливая синтез триацилглицеролов из углеводов, активируя липопротеиновую липазу (ЛП-липазу) адипоцитов;
9) ускоряют использование глюкозы в ЦТК и ПФШ.
В то же время полипептидная молекула инсулина не способна проникать через клеточную мембрану, поэтому все эффекты инсулина осуществляются через специальные рецепторы на ее поверхности. Рецепторы инсулина обнаружены почти во всех типах клеток, но больше всего их в гепатоцитах и клетках жировой ткани. Клетки с разным содержанием рецепторов на мембране реагируют по-разному на одну и ту же концентрацию гормона. Инсулиновый рецептор относится к рецепторам с тирозинкиназной активностью, обеспечивающим фосфорилирование специфических внутриклеточных белков - субстратов инсулинового рецептора (IRS). Активированные IRS включают несколько сигнальных путей в клетке, что составляет основу многостороннего влияния инсулина на внутриклеточный метаболизм.
Глюкагон - одноцепочечный полипептид, состоящий из 29 аминокислотных остатков, его эффекты противоположны эффектам инсулина. Основные клетки-мишени для глюкагона - печень и жировая ткань. Связываясь с рецепторами клеток-мишеней, глюкагон ускоряет мобилизацию гликогена в печени и мобилизацию липидов в жировой ткани, активируя через аденилатциклазный каскад гормончувствительную ТАГ-липазу. В β-клетках поджелудочной железы глюкагон стимулирует секрецию инсулина из гранул в условиях высокой гликемии в течение абсорбтивного периода (см. рис. 12-19). Совместные эффекты инсулина и глюкагона в поджелудочной железе и в других органах представлены на рис. 12-21.
Углеводы в организме имеют значение энергетического материала. Их важная роль в энергетике организма обусловлена быстротой их распада и окисления, а также тем, что они быстро извлекаются из депо и могут быть использованы в тех случаях, когда организм нуждается в дополнительных и стремительно нарастающих затратах энергии, например при эмоциональном возбуждении (гнев, страх, боль), тяжелых мыишечных усилиях, судорогах, в условиях, вызывающих резкое падение температуры тела. Весьма значительна роль углеводов в обмене веществ мышц.
Значение углеводов как источника энергии видно из того, что при уменьшении уровня сахара в крови, при так называемой гипоглимии, наблюдаются падение температуры тела и мышечная слабость, сопровождающаяся ощущением утомления. Резкая гипогликемия может привести к смерти.
Углеводы также имеют значение и в обмене веществ центральной нервной системы. На это указывает то, что в случае снижения количества сахара в крови до 40 мг% вместо нормального содержания, равного в среднем 100 мг%, отмечаются резкие расстройства нормальной деятельности центральной нервной системы. В результате наступают судороги, бред, потеря сознания и изменения состояния органов, иннервируемых вегетативной нервной системой: побледнение или покраснение кожи, потоотделение, изменение деятельности сердца и др.
Достаточно под кожу или в кровь ввести раствор глюкозы, дать его выпить или съесть обычный пищевой сахар, чтобы через короткое время все неблагоприятные явления гипогликемии были ликвидированы.
Регуляция обмена углеводов
Воздействие нервной системы на углеводный обмен впервые было обнаружено Клодом Вернаром. Он открыл, что укол продолговатого мозга в области дна IV желудочка («сахарный укол») вызывает мобилизацию углеводных запасов печени с последующей гипергликемией и гликозурией. Высшие центры регуляции углеводного обмена находятся в гипоталамусе. При его раздражении возникают такие же изменения в yглеводном обмене, как при уколе дна IV желудочка.
Влияние центров углеводного обмена на периферию осуществлеяется главным образом через симпатическую нервную систему. Важную роль в механизме нервного влияния на углеводный обмен играет адреналин, который, образуясь при возбуждении симпатической нервной системы, действует на печень и мышцы и вызывает мобилизацию гликогена.
На углеводный обмен оказывает влияние кора больших полушарий головного мозга. Доказательством этого является повышение содержания сахара в крови и даже выделение небольших количеств его с мочой у студентов после трудного экзамена, у зрителей футбольного состязания и у запасных футболистов, не принимавших участия в игре, но волновавшихся за успех своей команды.
Гуморальная регуляция углеводного обмена очень сложна. Помимо адреналина, в ней принимают участие гормоны поджелудочной железы - инсулин и глюкагон. Некоторое влияние на обмен углеводов оказывают также гормоны гипофиза, коры надпочечников и щитовидной железы.